
Can We Use Arbitrary Objects to Attack LiDAR Perception in
Autonomous Driving?

Yi Zhu∗1, Chenglin Miao∗2, Tianhang Zheng3, Foad Hajiaghajani1, Lu Su4, Chunming Qiao1
1 State University of New York at Buffalo, Buffalo, NY USA 2 University of Georgia, Athens, GA USA
3 University of Toronto, Toronto, ON Canada 4 Purdue University, West Lafayette, IN USA

Email: 1 {yzhu39, foadhaji, qiao}@buffalo.edu, 2 cmiao@uga.edu, 3 th.zheng@mail.utoronto.ca, 4 lusu@purdue.edu

ABSTRACT
As an effective way to acquire accurate information about the driv-
ing environment, LiDAR perception has been widely adopted in
autonomous driving. The state-of-the-art LiDAR perception sys-
tems mainly rely on deep neural networks (DNNs) to achieve good
performance. However, DNNs have been demonstrated vulnera-
ble to adversarial attacks. Although there are a few works that
study adversarial attacks against LiDAR perception systems, these
attacks have some limitations in feasibility, flexibility, and stealthi-
ness when being performed in real-world scenarios. In this paper,
we investigate an easier way to perform effective adversarial at-
tacks with high flexibility and good stealthiness against LiDAR
perception in autonomous driving. Specifically, we propose a novel
attack framework based on which the attacker can identify a few
adversarial locations in the physical space. By placing arbitrary ob-
jects with reflective surface around these locations, the attacker can
easily fool the LiDAR perception systems. Extensive experiments
are conducted to evaluate the performance of the proposed attack,
and the results show that our proposed attack can achieve more
than 90% success rate. In addition, our real-world study demon-
strates that the proposed attack can be easily performed using only
two commercial drones. To the best of our knowledge, this paper
presents the first study on the effect of adversarial locations on
LiDAR perception models’ behaviors, the first investigation on how
to attack LiDAR perception systems using arbitrary objects with
reflective surface, and the first attack against LiDAR perception sys-
tems using commercial drones in physical world. Potential defense
strategies are also discussed to mitigate the proposed attacks.

CCS CONCEPTS
• Security and privacy→ Domain-specific security and pri-
vacy architectures; • Computer systems organization→ Em-
bedded and cyber-physical systems.

KEYWORDS
Autonomous driving; LiDAR perception; adversarial attack

∗The first two authors contribute equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea.
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8454-4/21/11. . . $15.00
https://doi.org/10.1145/3460120.3485377

ACM Reference Format:
Yi Zhu, Chenglin Miao, Tianhang Zheng, Foad Hajiaghajani, Lu Su, and
Chunming Qiao. 2021. Can We Use Arbitrary Objects to Attack LiDAR
Perception in Autonomous Driving?. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’21), November
15–19, 2021, Virtual Event, Republic of Korea. ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3460120.3485377

1 INTRODUCTION
Autonomous vehicles (AVs) are visioned as a revolutionary power
for future transportation. Understanding the surrounding driving
environment using the sensors such as cameras, radar, and LiDAR,
which is called perception, is a fundamental function of AV systems.
LiDAR, which can generate point clouds and provide accurate 3D
representation of the environment, has drawn significant atten-
tion. In recent years, LiDAR is equipped in increasing number of
commercial autonomous vehicles [1, 2, 29] to perform perception
tasks.

Deep neural networks (DNNs) have been widely adopted in ex-
isting LiDAR perception systems in autonomous driving. However,
DNNs have been previously found to be vulnerable to adversarial at-
tacks where a small perturbation on model’s input can significantly
change the output predictions. The adversarial attacks have been
widely studied in many existing works [10, 19, 28, 32, 49, 66, 68].
There are also some works investigating physically realizable ad-
versarial attacks against image perception systems in autonomous
driving [27, 64], which may cause potential traffic accidents in real
world scenarios.

Despite the prevalence of adversarial attacks, the study on the
vulnerability of LiDAR perception systems to such attacks in phys-
ical world remains scant. These attacks can be divided into two
categories: laser-based attack and object-based attack. The laser-
based attack methods [7, 23, 45] propose to spoof the LiDAR sensor
using laser signals to fool the detection systems. Although these
methods can achieve good attack performance, the attacker have to
dynamically transmit laser signals to the LiDARwith high precision.
This makes them difficult to perform in physical world especially
when the victim vehicle with LiDAR is moving. For the object-based
attack methods, the authors in [3, 8, 50, 51] propose to use objects
with adversarial shapes to attack LiDAR perception systems. How-
ever, these objects are designed with specific shapes and sizes, and
attacking with such adversarial objects is not flexible enough in
practice. Besides, the abnormal and uncommon shapes of these
adversarial objects make them suspicious to human perception. So
they can be easily detected by defenders and victims. In addition,
it is challenging to generate such specifically shaped objects with
high precision in practice.

https://doi.org/10.1145/3460120.3485377
https://doi.org/10.1145/3460120.3485377

The above challenges raise an important question: Is there an eas-
ier way to perform effective adversarial attacks with high flexibility
and good stealthiness against LiDAR perception in autonomous
driving? To answer this question, we investigate the possibility of
using arbitrary objects with reflective surface to fool the LiDAR
perception models. Our investigation shows that there are some
locations in the physical space where inserting any objects has neg-
ative effect on the models’ outputs. In this paper, these locations are
referred to as adversarial locations. If we can derive these locations
and place some objects around them, those objects would be able to
generate some points around these locations in the point cloud and
the LiDAR perception models may be fooled. Here we do not care
about the shape and size of the adopted objects. As long as these
objects can reflect laser, we can use them to perform the attacks.
The intuition behind this attack is that LiDAR perception models
learn the geometric features from the locations of the points, thus
there are some locations that are important for feature learning.
Those inserted points around adversarial locations could distort
the geometric features, and may lead to wrong detection results.

Based on the above intuition, in this paper, we propose a new
type of attack method based on which the attacker can identify a
few critical adversarial locations in the physical space. By placing
arbitrary objects with reflective surface around these critical loca-
tions, the attacker can effectively fool the LiDAR perception model.
Our real-world study demonstrates that the attacks can be easily
performed using only two commercial drones.

Figure 1: An example of the proposed attack using drones.

Figure 1 shows an example that can be used to illustrate our
proposed attack. In this example, the attacker takes two commer-
cial drones as the objects. The attacker first identifies two critical
adversarial locations (represented by red dots) in the physical space,
and then controls the drones to hover around these locations. Since
the drones themselves can reflect the laser and generate points
to negatively affect the model’s prediction, the LiDAR perception
system of the victim AV is fooled and fails to detect the car in front.
This example shows that the attack can be easily performed because
the attacker only needs to control the drones’ locations. In addition,
it is difficult for the victim AV to be aware of the attack behavior
as the drones just hover for a few seconds and can fly away im-
mediately after the attack without leaving any susceptible objects.
Furthermore, after the attack, the drones can be quickly re-deployed
to attack another victim AV, which causes serious safety issue on
multiple AVs within a short time period. Thus, the proposed attack
in this example not only has high feasibility and flexibility, but also
can achieve good stealthiness. Certainly, besides drones, we can
use other objects, such as traffic signs and advertisement boards, to
perform the attacks in practice.

In our proposed attack, a challenging problem is how to derive
the least number of critical adversarial locations in the physical
space. To address this problem, we propose a novel location search
framework to find such locations. This framework contains two
steps: Location Probing that aims to find a large number of locations
with high probability of being adversarial, and Location Selection
that selects the most critical locations among them based on the
negative effect of each individual location. In the Location Selection
step, we introduce the concept of adversarial score to measure the
negative effect of each individual location and propose a selection
algorithm to select the least number of critical locations required to
achieve the attack goal. The proposed algorithm does not require
white box access to the victim perception model, which makes
it more practical in real-world scenarios. To make the derivation
more efficient, we also design a new algorithm for the Location
Probing step to accelerate the process of finding critical adversarial
locations.

To demonstrate the effectiveness of the proposed attack, we
conduct extensive experiments on both a public LiDAR point cloud
dataset and a real-world LiDAR perception testbed. Our experiment
results on the public dataset show that the proposed attack can
fool the state-of-the-art LiDAR perception model with 93% success
rate. We also demonstrate that the proposed attack is robust to
different object sizes and location errors generated when placing the
object in the physical space. For the real-world LiDAR perception
testbed, we perform the proposed attack using only two commercial
drones. The experimental results show that the victim AV can be
constantly fooled as it drives forward and the attacker can achieve
88.5% success rate.

To the best of our knowledge, this paper presents the first study
on the effect of adversarial locations on LiDAR perception models’
behaviors, the first investigation on how to attack LiDAR perception
systems using arbitrary objects with reflective surface, and the first
attack against LiDAR perception systems using commercial drones
in physical world. Potential defense strategies are finally discussed
to mitigate the proposed attacks.

2 PRELIMINARIES
2.1 LiDAR Perception in Autonomous Driving
LiDAR is one of the major sensors adopted by autonomous vehi-
cles to perform the environment perception. LiDAR generates 3D
point cloud that contains the 3D coordinates and intensities of the
reflected points through laser scanning. LiDAR perception system
is designed to understand the surrounding environment from the
collected 3D point cloud, especially to detect the vehicles on the
road. Deep learning techniques have made tremendous progress
in LiDAR-based object detection. Existing LiDAR object detection
models can be divided into three types: voxel-based methods that
transform the point cloud into 3D voxel grids and learn the features
through 3D CNNs [29, 74], projection-based methods that project
the point cloud into 2D feature map and adopt 2D CNNs in feature
learning [1, 63], and point-based methods [34, 42] that directly learn
the point-wise features through a PointNet-like [35, 36] network.

A common pipeline of those object detection models adopted by
LiDAR perception systems is: For the LiDAR object detection model
𝑀 , it learns the geometric features from the input point cloud𝐷 , and

outputs a set of bounding box proposals 𝑌 = 𝑀 (𝐷). Each generated
bounding box proposal 𝑦 ∈ 𝑌 contains information of a potential
vehicle such as its location, orientation, size, and a confidence score
𝐶 (𝑦) that represents the possibility of the bounding box containing
a vehicle. Those proposals with low confidence scores (smaller than
a threshold 𝐶𝑡) will be ignored and the remaining bounding box
proposals are the final detection results.

2.2 Adversarial Attacks
Recent studies have proved that deep learning models in many
applications are vulnerable to adversarial attacks [4, 5, 15, 31]. By
making small perturbations on the original data to generate adver-
sarial examples [9, 20, 33, 65], the attacker can easily fool the deep
learning models with high probability.

Given a deep learning model𝑀 , input data𝐷 and the correspond-
ing ground truth label𝑦∗, the goal of the adversarial attack is to find
an adversarial input 𝐷𝑎𝑑𝑣 perturbed from 𝐷 so that𝑀 (𝐷𝑎𝑑𝑣) ≠ 𝑦∗.
The adversarial input 𝐷𝑎𝑑𝑣 is usually derived by solving an op-
timization problem [9, 20, 33, 53]. In physically realizable attack,
the adversarial input 𝐷𝑎𝑑𝑣 is often generated through a physically
realizable modification from the original input 𝐷 . To attack LiDAR
perception models and modify the input LiDAR point cloud in
physical world, the easiest way is to insert some points 𝐷 ′ into the
original point cloud 𝐷 and get the adversarial input 𝐷𝑎𝑑𝑣 = 𝐷 ∪𝐷 ′.
And an effective approach of inserting points is to place an object
with reflective surface and let it be scanned by LiDAR.

3 ADVERSARIAL LOCATIONS
LiDAR perception models learn the geometric features of LiDAR
point clouds from the locations of the 3D points. In this paper, we
define the state of a given location as whether there are LiDAR
points around this location. Obviously, the states of different loca-
tions in the 3D space determine the inputs of LiDAR perception
models and further affect their learned geometric features, which
motivates us to perform adversarial attacks by inserting points.
Intuitively, changing the states of some locations around the edge
of the target vehicle can “distort” the shape/outline of the vehicle,
and push the learned geometric features of the target vehicle to
the direction that gives low detection confidence. We demonstrate
this point in Section 8.2, where we show that the locations around
the vehicle’s edge are more likely to be adversarial. This is also the
reason why inserting points around the edge of the target can make
it “disappear”. Ideally, if the attacker can change the states of many
locations (inserting a large number of points) around the target,
it is easy for him to change the learned geometric features and
fool the detection results. However, changing the states of so many
locations is not practical in the physical world. In our attack, we
aim to find a few critical locations that are enough to significantly
change the features and fool the detection model. These locations
are referred to as critical adversarial locations.

We define critical adversarial locations as the locations where
inserting any points (even a single point) around each location
simultaneously would lead to a failed detection. The reason why
there exists critical adversarial locations is explained in Section
8.2. According to the definition, the shape of the inserted points
around these critical locations makes no difference in fooling the
model. This is because the points around the same location usually

have similar contribution to the features of point cloud geometry.
To the best of our knowledge, this is the first study that explores
the adversarial effects of some specific 3D locations to the target
detection model.

4 PROBLEM DEFINITION
Attack scenario. In this paper, we consider the scenarios where
the AVs use LiDAR perception system to detect objects on the
roads. The goal of the attacker is to fool the perception system
and make the victim AVs misunderstand the driving environments.
Specifically, we focus on the attack that aims to hide a target vehicle
from the LiDAR object detection system, which is called vehicle
hiding attack. Considering a driving environment where there is
a car in front of the victim vehicle, the attacker aims to hide the
front car from the LiDAR perception system of the coming victim
AV by placing arbitrary objects such as drones around the critical
adversarial locations. This kind of attacks may result in a rear-end
collision and cause catastrophic consequences.

Threat model.We assume that the attacker can slightly change
the targeted driving environments by placing some objects around
some specific locations. The attacker cannot obtain the original
point clouds collected by the victim AV, but he can generate a series
of surrogate point clouds (denoted as 𝐷∗) using a similar LiDAR
sensor as that adopted by the victim AV. In practice, the attacker
can generate the surrogate point clouds by imitating the possible
driving behaviors of the victim AV and collecting the sensory data
in different directions and from different distances to the target
vehicle. In addition, the autonomous vehicle companies may not
provide their model details and parameters. Thus, in our attack
framework, we consider a black-box setting where the attacker
does not have full access to the target model but he can query the
model and obtain the outputs.

Problem definition. The problem here is how to find the least
number of critical adversarial locations so that the attack goal can
be achieved by placing arbitrary objects around these locations.
Specifically, we formulate the problem as finding the critical adver-
sarial location set 𝑋 = {𝑥}, 𝑥 ∈ R3 where inserting random point
clusters around these locations simultaneously can make the LiDAR
perception model fail to detect the target vehicle, while minimizing
the number of locations in the set, i.e., |𝑋 |. Here we use random
point clusters to represent the arbitrary objects in the point cloud,
and we only care about the output bounding box proposals that are
relevant to the target vehicle (e.g., the proposals whose locations
are close to the target) among all the output proposals. To measure
whether the target vehicle is detected or not by the model, we pro-
pose to first select the bounding box proposals that are relevant to
the target from all the outputs, and check whether their maximum
confidence score is smaller than the detection threshold 𝐶𝑡 . Thus,
we formulate the problem as the following optimization problem:

min
𝑋

|𝑋 |

s.t. max
𝑦∈𝑌

𝜖 (𝑦) ∗𝐶 (𝑦) < 𝐶𝑡 ,

𝑌 = 𝑀 (𝐷∗ ∪ {𝐷′ (𝑥) |𝑥 ∈ 𝑋 }) .

(1)

Here 𝑌 contains all the output bounding box proposals of the detec-
tion model𝑀 after inserting a random point cluster 𝐷 ′(𝑥) around

each location 𝑥 . And 𝜖 (𝑦) checks whether the bounding box pro-
posal 𝑦 is relevant to the target vehicle 𝑦∗ and returns 1 if true. A
function 𝐹 (·) is introduced to measure such relevance. If the value
𝐹 (𝑦,𝑦∗) is larger than a threshold 𝐹𝑡 , we can say 𝑦 is relevant to
the target. In this paper, we use 𝐼𝑂𝑈 (Intersection over Union) as
the function 𝐹 , and 𝐹𝑡 is set to 0.1.

5 METHODOLOGY
To achieve the attack goal, we need to solve the above optimiza-
tion problem and derive the least number of critical adversarial
locations. However, it is difficult to directly solve the above prob-
lem because the objective function is non-differentiable and the
constraints are non-convex. To address this challenge, we propose
a novel framework based on heuristics to search for the critical
adversarial locations. This location search framework contains two
steps: Location Probing and Location Selection. The basic idea of the
framework is to first find a large number of locations with high
probability of being adversarial, and then select the most critical
ones among them by evaluating the negative effect of each indi-
vidual location on the model’s output. This set of the most critical
locations is the final output of the location search framework.

Specifically, in the Location Probing step, we aim to find a lo-
cation set containing a large number of locations that have high
probability of being around the adversarial regions and containing
the critical adversarial locations. There are many ways to find such
location set. We first introduce a vanilla algorithm (in Section 5.1)
to achieve this by randomly/uniformly sampling a location set from
the given searching area (e.g., around the target vehicle) repeatedly,
and selecting the location set that has the largest adversarial impact
from all the samples. We also propose a more efficient probing al-
gorithm to find such location set within less searching time, which
is introduced in Section 5.3. In the Location Selection step, we aim
to select the most critical locations within the found location set.
To find out which location is more critical, we define an adversarial
score to measure the negative effect of each individual location on
the model’s output. Based on the adversarial score of each location,
we then propose a selection algorithm to select the least number of
critical locations that can help achieve the attack goal. The Location
Selection step is discussed in Section 5.2.

Please note that the proposed framework is general, so different
algorithms can be adopted in Location Probing. We propose two
algorithms for Location Probing in this paper: a vanilla algorithm
based on random sampling (Section 5.1) and an efficient probing
algorithm (Section 5.3).

5.1 Location Probing
To find a set of locations with high probability of being adversarial,
we need to evaluate the overall adversarial impact of the given
location set, i.e., the impact of inserting any points around each
location in the set. To measure such adversarial impact, we first
define a function 𝐿(𝑋) as the maximum confidence score of relevant
bounding boxes given the input location set 𝑋 :

𝐿(𝑋) = max
𝑦∈𝑌

𝜖 (𝑦) ∗𝐶 (𝑦), (2)

where 𝑌 = 𝑀 (𝐷∗ ∪ {𝐷 ′(𝑥) |𝑥 ∈ 𝑋 }). Here we randomly insert
points around each location 𝑥 to the point cloud 𝐷∗, so 𝐷 ′(𝑥) is a

random point cluster whose center is location 𝑥 . In this step, we
could set the number of points in each point cluster (i.e., |𝐷 ′(𝑥) |) as
1 so that we can find the locations where the attacker only needs to
insert one point around each of them to achieve the attack goal. This
also makes it easy to perform the attack in practice as the attacker
only needs to place an object that can generate at least one point
around each location. In addition, smaller value of 𝐿(𝑋) implies
that simultaneously inserting points around the given locations
(i.e.,𝑋) gives lower confidence score of the proposals and makes the
target (i.e., the car in front of the victim AV) harder to be detected.
Thus, the locations in the location set 𝑋 with smaller value of 𝐿(𝑋)
are more likely to be adversarial.

In this step, we aim to find the location set containing𝑄 locations
that have high probability of being adversarial. Based on above dis-
cussion, if the value of 𝐿(𝑋) is small, most of the locations in𝑋 may
locate within the adversarial region and has high probability of
containing critical adversarial locations. Here we propose a method
based on random sampling to find such location set. Specifically,
we randomly probe𝑄 locations in the given area (around the target
vehicle) for 𝑃 iterations. In each iteration 𝑝 , we randomly and inde-
pendently generate a location set𝑋𝑝 based on uniform distribution,
so that we obtain 𝑃 location sets after 𝑃 iterations. Among the 𝑃
location sets, the location set that has the smallest value of 𝐿(·) can
be selected, denoted as 𝑋 . To further improve the probability of the
found locations containing critical adversarial locations, instead of
selecting one location set, we could select𝑀 location sets with the
smallest values of 𝐿(𝑋𝑝) among all the 𝑃 location sets, denoted as
{𝑋𝑚 |𝑖 = 1, 2, ..., 𝑀}. Obviously, larger values of 𝑃 (number of prob-
ing iterations) and𝑄 (number of probed locations at each iteration)
make it easier to find the critical adversarial locations with higher
probability, due to larger number of probed locations.

The above algorithm is a vanilla version of location probing
scheme to demonstrate the basic procedure of the location probing
process. In fact, it is possible to employ more sophisticated algo-
rithms. We further propose an Efficient Probing algorithm for this
step in Section 5.3, which can find 𝑋 with less number of queries
and make it easier to find the critical adversarial locations.

5.2 Location Selection
In Location Probing step, we have found𝑀 location sets that have
high probability of being adversarial. In this step, we intend to
remove the redundant locations and select the critical locations
with the largest negative effect on the detection model. To help
find such critical locations, we first introduce the adversarial score
associated with each location.

Adversarial score.As we discussed in Section 2, some locations
and regions in the 3D space have negative effect to the model’s
output. We introduce the concept of adversarial score to measure
the negative effect of a given location. The location with high
adversarial score is around the region with large negative effect,
and inserting points around this location would have large negative
effect to the model. To calculate the adversarial score, it is obviously
not practical to test all location set combinations and calculate
the average effect on the model after inserting points around the
location sets. We here propose a method to calculate the adversarial
score based on the results in the Location Probing step.

In the Location Probing step, we have probed many sets of loca-
tions, and obtained the corresponding values of 𝐿(·) which indicate
the effect of inserting point clusters around these locations. Based
on this, we can use the 𝐿(·) value of each location set to measure
the effect of inserting new points at these locations. We define a
insertion score𝑊 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 for each location 𝑥 ∈ 𝑋 as:

𝑊 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 (𝑥) = exp(𝐿 (𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙) − 𝐿 (𝑋)), 𝑥 ∈ 𝑋, (3)

where 𝐿(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙) is the maximum confidence score of relevant
bounding box proposals given the original point cloud input 𝐷∗.
According to the above definition, in the Location Probing step,
the insertion score of each location 𝑥𝑝𝑞 in location set 𝑋𝑝 can be
represented as:𝑊 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 (𝑥𝑝𝑞) = exp(𝐿(𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙) −𝐿(𝑋𝑝)). Noted
that the insertion scores of the locations in the same location set
𝑋𝑝 are the same. In the probing process, the probed location set
with higher insertion score indicates that the locations in the set
are more likely to be adversarial and contain the critical adversarial
locations, because inserting points at these locations give lower
value of 𝐿(·). i.e., have more negative effect to the model’s output,
as discussed in Section 3.

Since the insertion score only evaluates the overall effect of
inserting points around a set of locations together, we still need to
evaluate the negative effect of each individual location to find the
critical adversarial locations. Thus, a removal score𝑊 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 is
introduced to evaluate the importance of each location in the given
location set. To calculate the removal score, after inserting points
around the given location set 𝑋 , we remove points around a subset
of locations that belong to 𝑋 and then calculate the change of the
value of 𝐿(𝑋).

Specifically, we randomly remove 𝐾 locations 𝑋𝑛 = {𝑥𝑛
𝑘
|𝑘 =

1, 2, ..., 𝐾} from 𝑋 at each iteration 𝑛, and calculate the changes
of exp(𝐿(𝑋 − 𝑋𝑛) − 𝐿(𝑋)), where 𝑋𝑛 ⊂ 𝑋 and 𝑋 − 𝑋𝑛 denotes
removing location set𝑋𝑛 from set𝑋 . After𝑁 iterations, the removal
score of each location 𝑥 is given by the average changes:

𝑊 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 (𝑥) =
𝐴𝑉𝐸𝑅𝐴𝐺𝐸 ({exp(𝐿 (𝑋 −𝑋𝑛) − 𝐿 (𝑋)) |𝑥 ∈ 𝑋𝑛, 𝑛 = 1, 2, ..., 𝑁 }) .

(4)

The removal score of the location 𝑥 measures the importance of this
location among all the locations in 𝑋 . After inserting random point
cluster at each location of 𝑋 , if removing the subset of locations
𝑋𝑛 gives larger value of 𝐿(·), 𝐿(𝑋 − 𝑋𝑛) > 𝐿(𝑋)), then obviously
the removed locations have more negative effect to the model com-
pared with the remaining locations. Thus, the location with higher
removal score plays a critical adversarial role to the model’s output
among the locations in set 𝑋 .

Finally, we define the adversarial score𝑊 of 𝑥 as the multiplica-
tion of the insertion score and removal score:

𝑊 (𝑥) =𝑊 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 (𝑥) ∗𝑊 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 (𝑥) . (5)

The reason behind the definition is that higher insertion score
indicates location 𝑥 is in the location set 𝑋 that has higher prob-
ability of being adversarial and being around critical adversarial
locations, and higher removal score indicates the location 𝑥 has
larger adversarial effect among the locations in 𝑋 . The pseudo code
of calculating adversarial score of each location 𝑥 in location set 𝑋
is shown in Algorithm 1:

Algorithm 1: Calculate adversarial score
Input: the surrogate point cloud 𝐷∗; location set 𝑋 ; parameter 𝑁

and 𝐾 .
𝑊 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 (𝑥) ← exp(𝐿 (𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙) − 𝐿 (𝑋)), 𝑥 ∈ 𝑋 ;
for 𝑛 ∈ {1, 2, ..., 𝑁 } do

Randomly remove 𝐾 locations
𝑋𝑛 = {𝑥𝑛

𝑘
|𝑘 = 1, 2, ..., 𝐾 }, 𝑋𝑛 ⊂ 𝑋 ;

end
𝑊 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 (𝑥) ← 𝐴𝑉𝐸𝑅𝐴𝐺𝐸 ({exp(𝐿 (𝑋 −𝑋𝑛) − 𝐿 (𝑋)) |𝑥 ∈
𝑋𝑛, 𝑛 = 1, 2, ..., 𝑁 }) ;
𝑊 (𝑥) ←𝑊 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 (𝑥) ∗𝑊 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 (𝑥) for each 𝑥 ∈ 𝑋 ;
Output: {𝑊 (𝑥) |𝑥 ∈ 𝑋 }

Selection based on adversarial scores.Here we introduce the
whole process of Location Selection. Given the input location set 𝑋 ,
we first calculate the adversarial scores𝑊 (𝑥) of each location 𝑥 ∈ 𝑋
according to Algorithm 1. When calculating the adversarial scores,
we can also obtain the values 𝐿(𝑋 − 𝑋𝑛) after removing locations
𝑋𝑛 in each iteration 𝑛. We first remove the locations that gives the
smallest value of 𝐿(·) after removal, 𝑋𝑟𝑒𝑚𝑜𝑣𝑒 = arg min𝑋𝑛 𝐿(𝑋 −
𝑋𝑛), if removing those locations achieves the attack goal (i.e., 𝐿(𝑋 −
𝑋𝑛) < 𝐶𝑡). These locations 𝑋𝑟𝑒𝑚𝑜𝑣𝑒 have small negative effect to
the model as we discusses before, and removing them in advance
would accelerate the process. 𝑋 is then updated to the remaining
location set. Starting from an empty set ¥𝑋 , we then iterative select
each location 𝑥 from the remaining locations in the descending
order of their adversarial scores, and check if adding 𝑥 to the set
¥𝑋 makes 𝐿(·) decrease, i.e., 𝐿(¥𝑋 + 𝑥) < 𝐿(¥𝑋). If true, we add the
location 𝑥 to ¥𝑋 and update ¥𝑋 . Otherwise, we move on to the next
location until we go through all the locations in 𝑋 . Then we update
the current location set𝑋 with ¥𝑋 if 𝐿(¥𝑋) < 𝐶𝑡 , and repeat the whole
above process until the location set 𝑋 is stable. The algorithm of
generating adversarial locations is described in Algorithm 2.

5.3 Efficient Probing Algorithm
Although the above algorithm can effectively generate critical ad-
versarial locations, it requires many searching iterations and queries
because it probes the given region uniformly and randomly in the
Location Probing step. To accelerate the probing process and fur-
ther reduce query numbers, we propose Efficient Probing algorithm
in replacement of the random sampling algorithm in Section 5.1.

The basic idea of the Efficient Probing algorithm is to utilize the
adversarial scores of previous probed locations as guidance. After
randomly probing a set of locations, we calculate their adversarial
scores. As we discussed in Section 5.2, the location with high adver-
sarial score is around the regions with large negative effect. Then
we use the locations with high adversarial scores as the centers,
and generate new location set near these locations for the next
iteration. In this way, we can always probe the locations around the
regions with large negative effect, which increases the probability
of finding critical adversarial locations. This probing strategy can
narrow the searching space and accelerate the searching process.

Moreover, although we have discussed how to calculate adver-
sarial score in Section 5.2, it brings extra queries. To further reduce
the number of queries, we propose a simplified method to estimate
the adversarial score approximately. Instead of randomly removing
𝐾 locations at each iteration, we randomly divide the location set

Algorithm 2: Generate critical adversarial location set
Input: the surrogate point cloud 𝐷∗; parameters 𝑃 ,𝑄 ,𝑀 , 𝑁 , and 𝐾 .
// Location Probing, a vanilla version

for 𝑝 ∈ {1, 2, ..., 𝑃 } do
randomly probe𝑄 locations 𝑋𝑝 = {𝑥𝑝𝑞 |𝑞 = 1, 2, ...,𝑄 };
calculate 𝐿 (𝑋𝑝) ;

end
select top𝑀 location sets {�̂�𝑚 |𝑚 = 1, 2, ..., 𝑀 } among
{𝑋𝑝 |𝑝 = 1, 2, ..., 𝑃 } with the highest values of 𝐿 (·) ;

// Location Selection

for each location set �̂�𝑚 do
repeat

for 𝑛 ∈ {1, 2, ..., 𝑁 } do
Randomly remove 𝐾 locations
𝑋𝑛 = {𝑥𝑛

𝑘
|𝑘 = 1, 2, ..., 𝐾 }, 𝑋𝑛 ⊂ �̂�𝑚 ;

Calculate 𝐿 (�̂�𝑚 −𝑋𝑛) after removal;
end
// Calculate adversarial scores based on

Algorithm 1

𝐶𝐴𝐿𝐶𝑈𝐿𝐴𝑇𝐸_𝐴𝐷𝑉 _𝑆𝐶𝑂𝑅𝐸 (𝐿, �̂�𝑚) ;
if min�̄�𝑛 𝐿 (�̂�𝑚 −𝑋𝑛) < 𝐶𝑡 then

// Remove the subset of locations

�̂�𝑚 ← �̂�𝑚 − arg min�̄�𝑛 𝐿 (�̂�𝑚 −𝑋𝑛) ;
end
initial ¥𝑋 ← ∅;
for 𝑥 ∈ 𝑆𝑂𝑅𝑇 (�̂�𝑚) do

// Iterative select one location and check

if 𝐿 (·) decreases
¥𝑋 ← ¥𝑋 + 𝑥 if 𝐿 (¥𝑋 + 𝑥) < 𝐿 (¥𝑋) ;

end
if 𝐿 (¥𝑋) < 𝐶𝑡 then

�̂�𝑚 ← ¥𝑋 ;
end

until �̂�𝑚 is stable;
get the final �̂�𝑚 ;

end
// Select the shortest location set that achieves the

attack goal.

𝑋 ∗ ← {𝑋 ∗ |𝑚 = 1, 2, ..., 𝑀, 𝐿 (�̂�𝑚) < 𝐶𝑡 }, 𝑋 ∗ =
arg min

�̂�𝑚 | |�̂�𝑚 | |;
Output: Critical adversarial locations 𝑋 ∗

𝑋 into �̃� subsets {�̃�𝑛 |𝑛 = 1, 2, ..., �̃� }. Then we remove one subset
at each time and calculate 𝐿(𝑋 − �̃�𝑛) − 𝐿(𝑋). The approximated
adversarial score of each location 𝑥 ∈ �̃�𝑛 is:

�̃� (𝑥) =𝑊 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 (𝑥) ∗�̃� 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 (𝑥)

= exp(𝐿 (𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙) − 𝐿 (𝑋)) ∗ exp(𝐿 (𝑋 − �̃�𝑛) − 𝐿 (𝑋)),
(6)

where 𝑥 ∈ �̃�𝑛 ⊂ 𝑋 .
In addition, we calculate the adversarial scores and update

the searching center only when the probed location set has
smaller value of 𝐿(·) than previous probed location set, 𝐿(𝑋) <
𝐿(𝑋𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠). The algorithm of the Efficient Probing is summarized
in Section A of the Appendix.

5.4 How to Perform the Attacks in Practice?
In practice, the attacker can derive the critical adversarial locations
in an offline manner. Before performing the attacks, the attacker

first imitates the driving behaviors of the victim AV and collects
the surrogate point clouds 𝐷∗ in the target driving environment
using a similar LiDAR that is adopted by the victim AV. However,
the attacker usually cannot predict the behaviors of the victim
AV before performing the attacks and it may come from different
directions. To address this challenge, we let the attacker collect the
surrogate point clouds in different directions and from different
distances to the target vehicle. In this way, the attacker can perform
robust continue attack and fool the victimAVswith different driving
behaviors. After collecting the surrogate point clouds, the attacker
derives the set of critical adversarial locations using our proposed
algorithms. Finally, the attacker can launch the attacks by placing
arbitrary objects around the derived critical adversarial locations.
As long as these objects can reflect laser, the attack goal can be
achieved. With the precalculated critical adversarial locations in
a target driving environment, the attacker can quickly launch the
attack when the victim AV is arriving. The derived locations does
not need to be changed during the attack.

6 EXPERIMENTS IN DIGITAL WORLD
6.1 Experimental Setting
We first use one of the most common LiDAR detection models,
i.e., PIXOR [63], as our target model. We train PIXOR with KITTI
dataset [18] to detect the vehicles on the road. Since our attack goal
here is to hide the target vehicle, we randomly select 200 frames
(examples) from the dataset and consider one target vehicle in front
of the victim in each frame. Then we take the selected point clouds
as the surrogate data 𝐷∗ and generate critical adversarial locations
using our algorithms. Specifically, when finding the critical loca-
tions, we only consider an area with the size of 4𝑚 ∗ 4𝑚 ∗ 1𝑚 above
the target vehicle. The reason why we select this area is that the
inserted objects in this area will not be blocked by other objects and
placing objects in this area is more feasible. When calculating the
adversarial scores, the𝐾 is set to 4. The detection confidence thresh-
old is set to 0.7. After finding the critical locations, we randomly
generate a point cluster around each generated location to evaluate
the attack performance. We repeat this random generation for 100
times and calculate the average result. The size of each random
point cluster, which is defined as the maximum distance among all
points, is set to 0.2𝑚. The number of points in each cluster is 4.

To evaluate the attack performance, we calculate the attack suc-
cess rate, which is defined as the percentage of the examples (LiDAR
frames) that are successfully attacked among all the examples. An
example is successfully attacked when the target vehicle is success-
fully hidden. Please note that here we consider one target vehicle
in front of the victim for each example. To demonstrate the attack
feasibility and stealthiness, we also evaluate the number of critical
adversarial locations that are required to achieve the attack goal.
In addition, in this paper, the proposed adversarial location-based
attack using the basic probing algorithm described in Section 5.1
is called AdvLo. The proposed attack using the efficient probing
algorithm described in Section 5.3 is called AdvLo-EP.

6.2 Overall Performance
In this experiment, we evaluate the performance of our algorithms
on the selected examples under different values of𝑄 , i.e., the number

Figure 2: Histogram of number
of critical adversarial locations.

Figure 3: Attack efficiency of Ad-
vLo.

Figure 4: Attack efficiency of
AdvLo-EP.

of the probed locations in each iteration in the Location Probing
step. We set the number of probing iterations 𝑃 to 1000 and vary 𝑄
from 20 to 50. In Table 1, we show the average attack success rate
and the average number of critical adversarial locations generated
by AdvLo and AdvLo-EP. The results show that AdvLo can achieve
93% success rate when 𝑄 is 50. In addition, we can observe that
both AdvLo and AdvLo-EP can achieve similar success rates with
similar numbers of critical locations under different values of 𝑄 .
We can also find that more searching locations in Location Probing
step results in higher attack success rate. This is mainly because
we can probe more locations when 𝑄 is large, which increases the
probability of finding the critical adversarial locations.

Table 1: The average attack success rate and number of crit-
ical adversarial locations

Average Success Rate Average Number of Locations

𝑄 AdvLo AdvLo-EP AdvLo AdvLo-EP

20 0.77 0.78 3.07 3.36
30 0.82 0.81 4.24 4.15
40 0.84 0.86 4.87 4.82
50 0.93 0.92 5.28 5.33

To show the feasibility of our attack, we further investigate
the number of critical adversarial locations required to achieve
the attack goal. Figure 2 shows the histogram of the number of
critical locations in all successfully attacked examples based on
AdvLo. We can observe that over a half of the examples require no
more than 2 critical adversarial locations, and around 70% of the
examples require no more than 3 locations. The results indicate
that the attacker only needs to use a few arbitrary objects (one
object for each location) to achieve the attack goal, which shows
high feasibility of our proposed attack.

6.3 Attack Efficiency
Next, we demonstrate the efficiency of our proposed two-step frame-
work. We first evaluate the efficiency of AdvLo and compare it with
directly searching in one step. Since the computation time is deter-
mined by the number of queries, we measure the number of queries
required to generate critical adversarial locations based on which
the attack goal can be achieved. In this experiment, we select the
examples that are successfully attacked with less than 5 adversarial
locations based on the proposed algorithm, and set the value of 𝑄
as 30. Here we consider two baseline methods that directly search
for the critical location set. The first baseline method, referred as
DirS, directly searches for 𝑋 containing 5 locations that minimizes
the value of 𝐿(𝑋) in Eq. (2) through random searching algorithm.

The second baseline method use gradient estimation and fast gra-
dient descent to directly search for 5 locations 𝑋 that minimizes
𝐿(𝑋). Figure 3 shows the attack success rate with respect to the
number of queries. We can observe that compared with the baseline
methods, our proposed two-step framework requires much less
quires to successfully attack all the selected examples. The results
also show that directly finding the critical locations is difficult due
to large searching space. Our proposed two-step framework, that
first probes a large number of locations and then selects the most
critical ones, is more efficient and effective. We also calculate the
required time for AdvLo to generate the adversarial locations. In
our experiment, the computation time for each query is around
0.56𝑠 . Here we use parallel computing in the Location Probing step
with 10 processes on 1 GPU. When 𝑄 is 30, to achieve an 80% suc-
cess rate, the average time of generating the adversarial locations
for each example is 92𝑠 , which is sustainable considering that the
calculation is conducted in an offline manner.

We then evaluate the efficiency of the proposed efficient probing
algorithm AdvLo-EP. Specifically, we compare the attack success
rate of AdvLo-EP with that of AdvLo under different numbers of
queries required in the Location Probing step. Here we vary the
value of 𝑄 from 20 to 50. In addition, we implement a baseline that
uses SimBA algorithm [21] in the Location Probing step, denoted
as AdvLo-SimBA. SimBA is a query-efficient black-box algorithm,
which repeatedly picks a random searching direction and adds the
vector if it points towards the decision boundary, otherwise sub-
tracts it. The baseline AdvLo-SimBA uses SimBA to search for the
location set 𝑋 in the Location Probing step. We report the results
in Figure 4. We can observe that the proposed Efficient Probing
algorithm AdvLo-EP can always achieve better attack success rate
with less queries under different values of 𝑄 . The results also show
that AdvLo-EP performs better than AdvLo-SimBA. This is because
SimBA may get stuck in local minimums. We further calculate the
required time for AdvLo-EP to generate the adversarial locations.
Here parallel computing is not used. When 𝑄 is 30, to achieve an
80% success rate, the average computation time is 44.7𝑠 . To sum up,
our proposed attack framework using the efficient probing algo-
rithm can derive the critical adversarial locations more efficiently
compared with random sampling and other searching baselines.

6.4 Robustness Analysis
Effect of object size. In this paper, we aim to perform the proposed
attack with arbitrary objects that can reflect laser. To demonstrate
the robustness of our proposed attack to object size (or shape),
we analyze the effect of object size on the attack success rate. For
the 200 selected samples, we generate random point cluster with

Figure 5: Effect of the ob-
ject size.

Figure 6: Effect of loca-
tion errors.

different sizes from 0.1𝑚 to 0.5𝑚, and insert the clusters to the
critical adversarial locations derived by AdvLo where 𝑄 = 30. The
number of points in each cluster is calculated as (𝑆𝑖𝑧𝑒 ∗ 10)2. We
then calculate attack success rate for different cluster sizes. The
experiment is repeated for 100 times and we report the average
result in Figure 5. We can observe that the attack success rate
increases as the cluster size increases, and even reaches 94% when
the cluster size is 0.5𝑚. This is because larger point cluster contains
more points and can cover more adversarial region, thus has more
adversarial effect to the model’s output. It is also intuitive that
placing larger objects around the vehicle is more likely to distort
the shape of the target vehicle and result in failed detection. The
results in this experiment show that increasing object size does not
degrade the performance of our attack, which means our attack is
robust to the size of the adopted object.

Effect of location errors of objects. In physical world deploy-
ment, it is usually difficult to place objects precisely at the generated
critical locations. Even after the deployment, the objects may also be
displaced due to various factors such as the wind. In this experiment,
we demonstrate the robustness of our attack to the location errors
when placing the objects. Specifically, we analyze the variance of
attack success rate when each random point cluster is shifted from
the critical adversarial location with different distances. Here the
critical adversarial locations are derived based on AdvLo when the
value of 𝑄 is set as 30. Figure 6 shows the attack success rate when
the shifting distance varies from 0.05𝑚 to 0.4𝑚 towards random
directions. The size of each point cluster is 0.2𝑚. We repeat the ex-
periments for 100 times and calculate the average result. As shown
in Figure 6, the attack success rate almost keeps the same when
the shifting distance varies. This is because the region around the
derived location is also adversarial. In other words, the adversarial
location could be an adversarial region. This is also demonstrated
in Section 8.2. So the attacker does not need to place the objects at
the critical locations with high precision to achieve the attack goal.
6.5 Comparison with Existing Attack
To further demonstrate the advantage of our proposed attack, we
compare it with the attack method proposed in [51] (denoted as
Phy-adv), which has the same attack goal as ours, i.e., hiding the
target vehicle by adding some adversarial objects. Phy-adv imple-
ments the attack by generating a 3D mesh and placing it on the
rooftop of the target vehicle. Compared with Phy-adv, our pro-
posed attack is not only more flexible and easier to perform, but
also stealthier in practice.

In this experiment, we generate adversarial objects for the same
200 examples as previous experiments. For Phy-adv, we follow
the setting described in [51]: the size of the object is set to 0.7 ∗
0.7 ∗ 0.5𝑚, and the object is placed at the center of the rooftop of
the target vehicle. To evaluate how easy and flexible our attack

Table 2: Comparison with existing attack method.

Shifting Distance Shape Distortion

Method 0.15𝑚 0.2𝑚 0.05𝑚 0.1𝑚

Phy-adv 0.43 0.40 0.54 0.48
AdvLo 0.78 0.77 0.82 0.82

is, we compare the success rate of our attack with that of Phy-
adv after shifting the adversarial objects and distorting their shape.
Intuitively, if the attackmethod can tolerate larger shifting distances
and more distortion of the shape, it will be easier to perform the
attack and more flexible when choosing the adversarial objects.
Because the attacker does not need to generate adversarial objects
with special shape and size and put them on specified locations
with high precision.

We first consider two scenarios where the shifting distances
of the adversarial objects are set to 0.15𝑚 and 0.2𝑚, respectively.
Then we distort the objects with 0.05𝑚 and 0.1𝑚 (without shifting
the objects). Table 2 reports the attack success rates for different
settings. Please note that when the shifting distance is 0 and there
is no shape distortion, the success rate of our attack is 0.82 while
that of Phy-adv is 0.77. The results show that the success rate of
Phy-adv decreases greatly after shifting the adversarial objects.
However, our proposed AdvLo still has good performance after
shifting the objects. This indicates that our attack can tolerate
larger location errors of the adversarial objects compared with Phy-
adv. Similarly, when the shape of the object is distorted, which may
be caused by manufacture error and imprecision of LiDAR scans,
the attack success rate of Phy-adv decreases. However, our attack
is not affected by the distortion. This is because the adversarial
objects in our attack can be in arbitrary shape. The above results
demonstrate that our attack is more flexible and easier to perform
compared with Phy-adv.

In addition, our attack has better stealthiness because the attacker
only needs to let the drones hover for a few seconds and fly away
immediately after the attack. However, in Phy-adv, the attacker has
to install the adversarial object on top of the vehicle, which can not
be removed quickly. Placing such a specially shaped object on the
car for a long time could be suspicious.

6.6 Performance on Different Detection Models
Besides PIXOR, we also evaluate the performance of the proposed
attack on the following state-of-the-art LiDAR detection models:

VoxelNet [74]. VoxelNet is a voxel-based LiDAR object detection
model that divides a point cloud into 3D voxels and learns the
voxel’s feature through a voxel feature encoding layer. A region
proposal network is adopted to generate the detection results.

PointPillars [29]. PointPillars is also a voxel-based detection
model. It divides the point cloud into vertical columns (pillars) and
utilizes PointNets to learn their features. Standard 2D convolutional
detection network can be used to generate bounding box proposals.

F-PointNet [34]. F-PointNet is a point-based detection model
utilizing PointNet-like network to segment foreground points from
background in a 3D bounding frustum, which is extracted from 2D
image detection results. A box regression PointNet model is used
to generate bounding box proposals from the foreground points.

Table 3: The average attack success rate on different models.

Models Average Success Rate Average Number of Locations

F-PointNet 0.89 2.99
VoxelNet 0.71 5.57

PointPillars 0.74 6.02

In this experiment, we set the values of 𝑄 and 𝑃 as 50 and 5000,
respectively. We then randomly select 100 examples from KITTI
dataset and use our algorithm AdvLo to generate critical adversarial
locations on each example. Table 3 reports the average attack suc-
cess rate and average number of critical locations for each detection
model. We can observe that the attack against F-PointNet has the
best performance with 89% success rate and 3 critical locations re-
quired on average. The attack performance of the other two models
are similar, and their attack success rates are more than 70%. These
results show that our attack framework is general enough to be
applied to attack different LiDAR perception models.

7 EXPERIMENTS IN PHYSICAL WORLD
7.1 Experimental Setting
In this section, we evaluate the attack effectiveness and feasibility
in physical world. The attack goal is to hide the target vehicle from
the victim LiDAR detection system. To achieve the goal, we first
imitate the victim AV and collect the surrogate point cloud data
using an Ouster OS1-64 LiDAR shown in Figure 7. The precision of
the LiDAR is 1.5 − 5𝑐𝑚. Its sensing range is 120𝑚, and its vertical
field of view is 45 degree. In our experiment, we mount and level
the LiDAR on top of a sedan vehicle using a tripod with suction
cups. The height of LiDAR from ground surface is 1.8𝑚.

To improve the attack robustness under various driving condi-
tions, we collect original data as input 𝐷∗ by imitating the victim
vehicle and moving forward in different directions in the given
surrounding environment. The adversarial impact is measured by
the summation of the 𝐿(·) values in Eq. (2) for all collected frames.
Since the target vehicle (i.e., the vehicle in front of the victim ve-
hicle) may move during the attack, we propose to find the critical
adversarial locations in the coordinate of the target vehicle so that
we can achieve the attack goal in all collected frames. In this way,
we can generate relative locations to the target vehicle’s center
and achieve constant attack by inserting objects that can move
with the target vehicle. In our experiment, we constrain the size
of the searching area to 4𝑚 ∗ 4𝑚 ∗ 1𝑚 above the car, whose center
is the center of the target vehicle. As shown in Figure 8b and 8f,
we evaluate the attack in two real-world scenarios where the black
car is the target vehicle. We use drones as the objects to be placed
around the generated critical locations. As we discussed, drone is
a good choice for launching the attack due to its stealthiness and
flexibility. It is easy to control drones to fly to the given locations,
and move with the target vehicle to perform constant attacks.

Here we consider PIXOR as the target detection model. Based
on the collected original point cloud data, we use the proposed
algorithm AdvLo to derive two critical locations that can be used to
hide the target vehicle from the victim AV. Thus, we only need two
drones to achieve the attack goal. The two drones we use are DJI
Phantom 4 pro and DJI Mavic pro. Since Mavic pro is too small and
might not be able to create stable reflected LiDAR points especially

Figure 7: The Ouster OS1-64 LiDAR.
when it is far away from the LiDAR, we hang a cardboard below it
as shown in Figure 8b and 8f.

7.2 Results Visualization
Figure 8 shows the attack results in the two scenarios. Figure 8a
and 8e show the detection results before the attack in bird-eye
views, where the target vehicle is successfully detected and marked
by a bounding box. The red side of the bounding box indicates the
head of the detected vehicle. Figure 8b and 8f show the drones are
hovering around the critical locations. In the point cloud scanned by
the LiDAR, each drone creates a small point cluster with 3-5 points
around the given locations, as shown by the red points in Figure 8c
and 8g. Figure 8d and 8h show the detection results after the attack.
We can observe that the target vehicle is not detected by the LiDAR
perception system in both two scenarios, which demonstrate the
effectiveness of our proposed attack in physical world.

7.3 Robustness in Physical World
Effect of driving directions and distances. To show the robust-
ness of our attack, we also drive the victim AV in different directions
towards the target vehicle and conduct continuous attack. In order
to collect enough evaluation data, we drive the victim AV from 30𝑚
to 5𝑚 away from the target vehicle at the speed of around 2m/s
in different directions (i.e., left side of the target vehicle, right side
of the target vehicle, and directly behind the target vehicle). We
conduct the attack in two different scenarios in Figure 8, and collect
801 LiDAR frames in total. The attack success rates for different
directions and distances are shown in Table 4. For each distance
range (e.g., 5 − 10𝑚), we report the average result over the frames
collected in this range, and we can see that the attack success rates
are similar when the victim drives in different directions. As the vic-
tim is driving close to the target, the attack success rate decreases.
This is because the target vehicle generates more LiDAR points
when it is closer to the LiDAR, which benefits the feature learning
of the detection model. However, even when the victim vehicle is
close to the target (e.g., 5−10𝑚), the success rate of our attack is still
around 80% on average. In Figure 9, we visualize some examples of
the attack results. Figure 9a, 9b, and 9c show the detection results
when the victim AV approaches the target vehicle. Figure 9d, 9e,
and 9f show the detection results when the victim AV drives in
different directions. As we can see, the target vehicle is not detected
in the shown 6 examples.

All the above results show that our proposed attack is not only
effective and feasible, but also robust in real-world driving environ-
ment, which enables real-world continuous attack. The reason for
the robustness of our attack is that we take into account different
driving directions and distances when generating critical adversar-
ial locations. As discussed in Section 4 and Section 5.4, the attacker

(a) Detection before attack (b) Attack with two drones (c) LiDAR scan (d) Detection after attack

(e) Detection before attack (f) Attack with two drones (g) LiDAR scan (h) Detection after attack

Figure 8: Attack using drones in two physical world scenarios.

Table 4: Success rates for different directions and distances.

5 − 10𝑚 10 − 15𝑚 15 − 20𝑚 20 − 25𝑚 25 − 30𝑚

Left 0.83 0.85 0.90 0.96 0.98
Behind 0.82 0.82 0.92 1.00 1.00
Right 0.79 0.85 0.93 1.00 0.97

(a) (b) (c)

(d) (e) (f)

Figure 9: Detection results in different positions.
first imitates the possible behaviors of the victim AV and collect
the surrogate point clouds 𝐷∗ of the target driving environment.
These point clouds are collected in different directions and from
different distances. Then these point clouds are used to generate
the critical adversarial locations. Thus, the derived locations are
robust to different driving directions and distances.

Effect of passing-by vehicles. To further demonstrate the ro-
bustness of our proposed attack, we also study the effect of small
environment changes on the attack performance. Specifically, we
consider the most common scenario where there are other vehicles
passing by. The passing-by vehicles would change the LiDAR point
cloud and might influence the attack performance. We evaluate this
effect by considering the same scenario in Figure 8f. To simulate
a passing-by vehicle, we drive another car beside the target car as
shown in Figure 10a. The critical adversarial locations are the same
locations in Figure 8f.

Figure 10b shows the detection result after the attack. The target
vehicle is still not detected, which means the passing-by vehicle

(a) Passing-by car (b) Detection result

Figure 10: Detection result when another car passes by.

has almost no effect on the performance. This is mainly because
the edge of the target vehicle plays a critical role in the detection
process, as discussed in Section 8.2, and the small environment
change caused by a passing-by vehicle does not affect the geomet-
ric features around the target’s edge. Additionally, in our real-world
experiments, the critical adversarial locations are generated from
large amount of original point cloud data collected under vari-
ous driving conditions, which is robust to the small environment
changes. Here the passing-by vehicle can be detected because we
do not target on this vehicle. The results show that, by considering
various driving conditions and collecting corresponding original
point clouds, the attacker is able to perform robust attack against
victim AVs in physical world.

8 ANALYSIS FOR ADVERSARIAL LOCATIONS
8.1 Adversarial Region Map
We study the characteristics of adversarial locations by visualizing
them using a heat map. Understanding the characteristics of the
adversarial locations, such as their distribution in the 3D space, is
essential for analyzing the vulnerability of the LiDAR object detec-
tion models and the possible security threats caused by adversarial
attacks. It can also help us understand why and how these adver-
sarial locations affect the model’s output and which region around
the target vehicle is more likely to be adversarial. In addition, the
characteristics of the adversarial locations may also provide poten-
tial guidance for developing robust object detection models against
adversarial attacks.

In Section 5, we discuss how to generate the critical adversarial
locations and their adversarial scores. It is intuitive to generate
the map using the adversarial scores. Although it is impractical

Figure 11: Average ad-
versarial region map: (a)
PIXOR, (b) VoxelNet.

Figure 12: Inserting
points based on adversar-
ial region map.

to calculate the adversarial score of every location in the given
region, we can sample a large number of locations and calculate
their adversarial scores. Specifically, in each of the 𝑃 iterations, we
select 𝑄 random locations 𝑋𝑝 from the given area and calculate
𝐿(𝑋𝑝). Based on Algorithm 1, we can calculate the adversarial
scores of all the 𝑄 locations in each iteration 𝑝 . We combine all the
𝑄 ∗ 𝑃 locations together as well as their adversarial scores. Then
we divide the space into small grids and the adversarial score of
each grid is the average score of the selected locations in the grid.

8.2 Experiments for Adversarial Region Map
Next, we investigate the characteristics of the adversarial locations
by visualizing the adversarial region maps. In this experiment, we
consider the area around each target vehicle. Specifically, we gen-
erate the adversarial region maps within an 8𝑚 ∗ 8𝑚 square area in
bird’s-eye views, whose center is the center of the target vehicle.
The area is divided into 0.2𝑚 ∗ 0.2𝑚 grids and each grid is assigned
a value based on its adversarial score, as discussed in Section 8.1.
Here we randomly select 100 examples (target vehicles) from KITTI
dataset and take them as test data.

Visualization. In this experiment, we take PIXOR and VoxelNet
as the target detection models. For each model, we first generate the
adversarial region map for each of the 100 examples based on the
method described in Section 8.1. Then we derive an average map by
taking the average over all the generated adversarial region maps.
Figure 11 shows the derived average maps for the two detection
models. In this figure, the regions with high adversarial scores are
highlighted using red color, and the deeper the color, the higher
the adversarial score. Blue color indicates low adversarial score.
The average location of the target vehicles is highlighted by a
dashed bounding box. We can see that although the distributions
of adversarial locations for the two detection models are different,
most of the regions with high adversarial scores are around the
edge of the target vehicles. This is mainly because the locations
around a target vehicle’s edge play a critical role in determining
the shape/outline of the vehicle and their states can significantly
affect the learned geometric features of the vehicle. We can also find
that the center of the vehicle’s top is less important than the edge.
This is probably because the top of the vehicle is barely scanned
by LiDAR in real-world driving scenarios and thus has fewer or
even no LiDAR points, as shown by Figure 13. Thus, the edge
regions can be used by the attacker to perform adversarial attacks
against LiDAR perception models. Through changing the states of
the locations (inserting points around them) in these regions, the
attacker can “distort” the shape/outline of the target vehicle and
change the learned geometric features of the target, which further
misleads the detection.

Figure 13: Examples of adversarial region maps.

Figure 13 shows the adversarial region maps for three examples
that are successfully attacked (each column describes one example).
Here the detection model is PIXOR. In the first row of this figure,
we show the bird’s-eye view of the point cloud and the inserted
random point clusters around critical adversarial locations. We also
highlight the points belonging to the target vehicle with blue color
and the inserted point clusters around critical locations with red
color. The adversarial region map of each example is shown in the
second row. The locations of the target vehicles are highlighted
in both the region maps and the point clouds by dashed bounding
boxes. The results show that the critical adversarial locations are
always around the grids with high adversarial scores in the map.

In addition, the results in Figure 13 show that the critical loca-
tions are only in a few red grids. Take the map in the first column
as an example, many grids are marked red but there is only one
critical adversarial location in one of the grids. The reason why we
can use a few critical adversarial locations to achieve the attack
goal can be explained from two aspects.

On one hand, for deep neural networks, small changes on the
input can be propagated to many feature layers and cause large
changes on the final learned features [52]. For example, recent stud-
ies have found that changing one pixel in an image can significantly
change the learned features and further change the classification re-
sults [43]. In LiDAR detection models, the neural network is usually
designed to be very deep in order to capture both small-scale (local)
features and large-scale (global) features. Thus, small changes on
the input (i.e., inserting a few points at a few locations) may signifi-
cantly change the final learned geometric features. To demonstrate
the effect of the inserted points on the learned features, we visualize
the difference between the feature maps before and after the attack,
which is shown in Section B of the Appendix.

On the other hand, the LiDAR points of the target vehicles are
usually sparse because of occlusion and missing reflection of laser
signals, as shown in Figure 13. Due to the sparsity of the target’s Li-
DAR points, inserting points around a few locations can be enough
to distort the shape or outline of the target vehicle and further
affect the geometric features. The experimental results in Table 4
and Figure 14a also show that it is easier for the attacker to perform
the attack when the target vehicle is further from LiDAR, because
the target generates less LiDAR points when the distance between
the target and LiDAR is larger.

In Figure 13, we can also observe that the regions around the
derived adversarial locations are also adversarial, which means
nearby locations tend to share the same vulnerability as the derived
adversarial locations. So the inserted points can tolerate shape

(a) Different distances (b) Different directions

Figure 14: Adversarial regionmaps under different settings.

distortions and location errors. This also explains why our attack
can use arbitrary objects and is robust to location errors as long as
they are around the derived adversarial locations.

Inserting points according to the map. To further validate
the generated adversarial region map, we insert random points into
the grids with high adversarial scores derived for PIXOR, and then
calculate 𝐿(·) defined in Eq. (2). Specifically, we select a particular
number of grids with the highest adversarial scores and randomly
insert 4 points into each of these grids (each grid is 0.2m*0.2m). This
operation is referred to as high score insert. We also randomly insert
points into the grids with lowest adversarial scores in the same way,
which is referred to as low score insert. Figure 12 shows the changes
of the value of 𝐿(·) with respect to the number of grids in these two
kinds of insertions. As expected, randomly inserting points into
the adversarial regions with high adversarial scores results in the
drop of confidence score (i.e., the value of 𝐿(·)). Inserting points
into the regions with low adversarial scores makes the confidence
score increase slightly, which means the detection results of the
target vehicles are improved. These results verify that the regions
with high adversarial scores have negative effect on the detection
results and the regions with low adversarial scores have positive
effect on the detection results.

Adversarial locations under different settings. Next, we
study the factors that may affect the adversarial locations. Here we
still take PIXOR as an example.

We first study the effect of LiDAR’s distance to the target vehicle.
Specifically, we divide the examples into three groups based on the
distance between the target vehicle and the LiDAR. Specifically, the
distance ranges for the three groups are 5− 20𝑚, 20− 35𝑚, and 35−
70𝑚, respectively. Then we generate the average adversarial region
map for each group, which is shown in Figure 14a. We can see that
although the distributions of adversarial locations in the three maps
are different, there are some locations that have high adversarial
scores in all the three maps. This indicates that we could find some
adversarial locations that are critical even when the distance varies,
which can help the attacker achieve continuous attack (as shown
in Section 7.3). In addition, the results show that when the target is
further from LiDAR, the adversarial region becomes larger, which
is also demonstrated in Table 4.

We then study the effect of LiDAR’s direction to the target ve-
hicle. We divide the examples into three groups based on LiDAR’s
direction to the target, i.e., left side of the target, right side of the
target, and directly behind the target. To better categorize these
groups, here we consider the vehicles that are driving forward in
front of the LiDAR. Figure 14b shows the average adversarial region
maps for the three groups. We can see that the directions have a
small effect on the distribution of adversarial locations.

In addition, we study the effect of other factors including the
target vehicle’s size and the street where the target vehicle is located.
The experimental results are shown in Section C of the Appendix.

9 DISCUSSION
9.1 Potential Defense Strategies
Defense based on adversarial location. Our investigation on
the adversarial region map shows that the locations around the
edge of the target vehicle play critical roles in determining the
outputs of LiDAR perception models. The attacker can take them as
adversarial locations and use them to perform adversarial attacks
by simply changing their states. To defend against such attacks, a
potential strategy is to prevent the attacker from deriving these ad-
versarial locations. In our attack method, the adversarial locations
are generated by finding the locations with high adversarial scores.
Thus, we propose to reduce the adversarial scores of the locations
around the edge of the target vehicle when training the detection
model so that the attacker cannot identify these locations in the
follow-up attacks. According to Eq. (3) and Eq. (5), the adversarial
score of the locations in 𝑋 is determined by function 𝐿(𝑋). The
larger the value of 𝐿(𝑋), the less the adversarial scores of the lo-
cations in 𝑋 . Our goal in this defense strategy is to maximize the
value of 𝐿(𝑋) given that 𝑋 is the locations around the edge of the
target vehicle. Specifically, we integrate 𝐿(𝑋) into the loss function
adopted by the original LiDAR detection model. However, since
𝐿(𝑋) is not differentiable, we approximate it using a differentiable
function: 𝐿′(𝑋) = max𝑦∈𝑌 max(1−(𝑅(𝑦,𝑦∗)−𝑅𝑡), 0) ∗𝐶 (𝑦), where
𝑅(𝑦,𝑦∗) measures the distance between the output bounding box
proposal 𝑦 and the ground truth bounding box 𝑦∗. 𝑅𝑡 is the distance
threshold to check whether the bounding box proposal𝑦 is relevant
to the target vehicle 𝑦∗. In addition, we consider all the vehicles in
the training data and maximize the 𝐿(𝑋) for each vehicle. Then we
train the LiDAR perception model using the following loss function.

�̂� = 𝐿𝑝𝑟𝑒𝑑 − 𝛽
∑
𝑦∗∈𝑌 ∗

𝐿′, (7)

where 𝑌 ∗ contains the ground truth bounding boxes of all the
vehicles in the training data, and 𝐿𝑝𝑟𝑒𝑑 is the original loss function
adopted by the detection model. 𝛽 is a trade-off parameter.

To evaluate the proposed defense strategy, we choose PIXOR
as the detection model. We train PIXOR using the proposed loss
function �̂�, and 𝛽 is set to 0.01. For each vehicle, 𝑋 is the location
set containing 10 locations which are randomly chosen around the
edge of the vehicle. Then we generate the adversarial locations for
the same 200 examples that are used in Section 6 to attack the new
detection model. The attack success rate is reduced to 0.34, which
shows that the proposed defense strategy is effective and it can
make the detection model more robust to mitigate the adversarial
attacks. However, we find that by increasing the number of probed
locations𝑄 in the attack, the attacker can still achieve a good attack
success rate. When 𝑄 is increased to 60, the attack success rate is
increased to 0.59. Besides, we find that increasing the number of
locations in𝑋 may degrade the detection accuracy when there is no
attack. Thus, there is a trade off between the defense performance
and detection performance.

Other defense strategies. Another potential defense strategy
against the proposed attack is to train the model with adversarial
examples (i.e., adversarial training). To evaluate the performance of
this defense strategy, we use PIXOR as the target detection model
and retrain the model by inserting adversarial point clusters into

the training data. Specifically, when training the new model, we
randomly select one target vehicle in each LiDAR frame, and in-
sert 10 random point clusters around the target vehicle into the
original point cloud. Our experimental results show that the attack
success rate on the retrained model can be reduced to 75%, which
means the adversarial training can degrade the performance of our
proposed attack. However, our proposed attack can still achieve
high success rate even after adversarial training. Besides, we can
use LiDAR together with other types of sensors (e.g., camera and
radar) and detect objects based on sensor fusion. However, such
defense strategy requires additional sensors and increases the cost
of autonomous vehicle systems. In addition, recent studies have
found that image perception systems and radar are also vulnerable
to some attacks [27, 64]. It is entirely possible to attack multiple
sensors simultaneously and fool the sensor fusion systems [6, 50].

9.2 Limitations and Future Work
One limitation of our attack is that the derived critical adversarial
locations on one street may not be useful on another street. Thus,
the attacker needs to recalculate the critical adversarial locations
if he wants to perform the attack on a new street. To address this
problem, in Section D of the Appendix, we provide a preliminary
study on the universal attack, where the derived adversarial lo-
cations can be used to fool the detection models on any streets.
Further study on the universal attack will be our future work.

Another limitation of our method is that in some cases the at-
tacker needs to place adversarial objects at more than three critical
adversarial locations to achieve the attack goal. If the attacker uses
drones to perform the attack, how to simultaneously control so
many drones is a practical challenge. However, drone localization
and communication techniques have been well developed, and mul-
tiple drones are able to cooperate with each other to perform some
complicated tasks such as drone display [48, 61]. In our future work,
we will combine such techniques with the proposed attack.

10 RELATEDWORK
10.1 Vehicular System Security
The security issues of vehicular systems have drawn significant
attention [11–13, 25, 26, 39, 40, 47, 54, 55, 71, 73], and there are
extensive prior works studying the security vulnerabilities of
AVs [14, 16, 17, 22, 24, 37, 41, 44, 46, 56, 60]. Although differ-
ent methods have been developed to attack the perception sys-
tems of AVs [38, 62], most of them focus on camera-based percep-
tion [27, 59, 64]. There are only a few works that study the security
threats to LiDAR-based perception systems.

Currently, there are mainly two categories of attacks against Li-
DAR perception systems: laser-based attack and object-based attack.
For the laser-based attack methods [7, 23, 45], the attacker achieves
the attack goal through strategically transmitting laser signals to
the victim vehicle’s LiDAR sensor. Although this kind of attacks
can achieve good performance, they require the attacker to aim at
the LiDAR with high precision, which is usually difficult to achieve
when the vehicle is moving in physical world. In addition, the laser
signals need to be generated by some special devices, which limits
the flexibility of this kind of attacks. For the object-based attack
methods, the attacker achieves the attack goal by generating some

adversarial objects and placing them on the rooftop of the target
vehicle [3, 50, 51] or on the road [8]. However, these objects usually
have specific shapes and sizes, so their attack flexibility is limited.
The attacker can only use the specifically shaped object to attack
the victim AV on one specific detection model, one specific vehicle
type, or one specific target scenario. In addition, these adversarial
objects are in abnormal shapes which can be suspicious to human
eyes. And the inaccuracies when crafting these objects in physical
world as well as the noises of LiDAR scanning may fail the attacks.

Different from the above works, our goal in this paper is to design
an easier and more flexible way and use arbitrary objects to attack
LiDAR object detection in autonomous driving. Our attack can be
implemented with any objects that have good stealthiness (e.g.,
drones, traffic signs, and advertisement board), as long as these
objects can reflect laser. More importantly, it is easy to perform
our proposed attacks in physical world. The attacker only needs
to place some objects around the derived adversarial locations to
achieve the attack goal.

10.2 3D Adversarial Attacks
3D adversarial attacks have been widely studied to to fool point
cloud classification models in digital world [30, 57, 58, 67, 69, 70, 72].
However, point cloud classification is different from LiDAR object
detection. The goal of point cloud classification is to derive a label
(e.g., chair and desk) for the whole point cloud while LiDAR object
detection aims to find the locations/orientations of the targets such
as vehicles and generate a bounding box for each vehicle. Thus,
existing 3D adversarial attack techniques cannot be directly applied
to our problem. In addition, the adversarial examples generated
by these techniques are not always physically realizable because
they mainly focus on digital world. In contrast, in this paper, we
study how to perform practical and effective adversarial attacks in
real-world driving environments.

11 CONCLUSIONS
In this paper, we investigate the possibility of using arbitrary ob-
jects with reflective surface to attack LiDAR perception systems.
Specifically, we propose a novel attack framework based on which
the attacker can identify the least number of critical adversarial lo-
cations in the physical space. By placing some objects around these
locations, the attacker can easily fool the LiDAR perception system.
We evaluate the proposed attack framework on both a public LiDAR
point cloud dataset and a real-world LiDAR perception testbed. The
experimental results show that our proposed attack can achieve
93% success rate and has strong robustness. We also successfully
attack the real-world LiDAR perception system using only two
commercial drones based on the proposed attack framework. In
addition, we visualize the distribution of adversarial locations and
discuss their characteristics.

12 ACKNOWLEDGMENTS
We thank our anonymous reviewers for their insightful comments
and suggestions on this paper. This work was supported in part
by the US National Science Foundation under grant CNS-1626374,
CNS-2120369, CNS-1737590, CNS-1652503, and ECCS-2028872.

REFERENCES
[1] [n. d.]. Baidu Apollo. https://apollo.auto/.
[2] [n. d.]. Driverless taxis to be available in Phoenix ’in weeks’. https://www.bbc.

com/news/technology-54476524.
[3] Mazen Abdelfattah, Kaiwen Yuan, Z Jane Wang, and Rabab Ward. 2021. Towards

Universal Physical Attacks On Cascaded Camera-Lidar 3D Object Detection
Models. arXiv preprint arXiv:2101.10747 (2021).

[4] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan Picek. 2019. Poster:
Recovering the Input of Neural Networks via Single Shot Side-channel Attacks. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security. 2657–2659.

[5] Sebastian P Bayerl, Tommaso Frassetto, Patrick Jauernig, Korbinian Riedham-
mer, Ahmad-Reza Sadeghi, Thomas Schneider, Emmanuel Stapf, and Christian
Weinert. 2020. Offline model guard: Secure and private ML on mobile devices.
In Proceedings of the 2020 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 460–465.

[6] Yulong Cao, Ningfei Wang, Chaowei Xiao, Dawei Yang, Jin Fang, Ruigang Yang,
Qi Alfred Chen, Mingyan Liu, and Bo Li. 2021. Invisible for both Camera and
LiDAR: Security of Multi-Sensor Fusion based Perception in Autonomous Driving
Under Physical-World Attacks. arXiv preprint arXiv:2106.09249 (2021).

[7] Yulong Cao, Chaowei Xiao, Benjamin Cyr, Yimeng Zhou, Won Park, Sara Ram-
pazzi, Qi Alfred Chen, Kevin Fu, and Z Morley Mao. 2019. Adversarial sensor
attack on lidar-based perception in autonomous driving. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security. 2267–2281.

[8] Yulong Cao, Chaowei Xiao, Dawei Yang, Jing Fang, Ruigang Yang, Mingyan Liu,
and Bo Li. 2019. Adversarial objects against lidar-based autonomous driving
systems. arXiv preprint arXiv:1907.05418 (2019).

[9] Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness of
neural networks. In Proceedings of 2017 IEEE symposium on security and privacy
(sp). IEEE, 39–57.

[10] Kuei-Huan Chang, Po-Hao Huang, Honggang Yu, Yier Jin, and Ting-Chi Wang.
2020. Audio Adversarial Examples Generation with Recurrent Neural Networks.
In Proceedings of the 2020 25th Asia and South Pacific Design Automation Conference
(ASP-DAC). IEEE, 488–493.

[11] Qi Alfred Chen, Yucheng Yin, Yiheng Feng, Z Morley Mao, and Henry X Liu.
2018. Exposing Congestion Attack on Emerging Connected Vehicle based Traffic
Signal Control. In Proceedings of the Network and Distributed System Security
Symposium.

[12] Anupam Das, Martin Degeling, Xiaoyou Wang, Junjue Wang, Norman Sadeh,
and Mahadev Satyanarayanan. 2017. Assisting users in a world full of cameras: A
privacy-aware infrastructure for computer vision applications. In Proceedings of
the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW). IEEE, 1387–1396.

[13] Lucas Davi, Denis Hatebur, Maritta Heisel, and Roman Wirtz. 2019. Combin-
ing safety and security in autonomous cars using blockchain technologies. In
Proceedings of the International Conference on Computer Safety, Reliability, and
Security. Springer, 223–234.

[14] Bruce DeBruhl and Patrick Tague. 2018. Optimizing a MisInformation and
MisBehavior (MIB) Attack Targeting Connected Cars. en. In Proceedings of the
IEEE Connected and Automated Vehicles Symposium (CAVS), Vol. 5.

[15] Ghada Dessouky, Patrick Jauernig, Nele Mentens, Ahmad-Reza Sadeghi, and
Emmanuel Stapf. 2020. AI Utopia or Dystopia-On Securing AI Platforms. In
Proceedings of the 2020 57th ACM/IEEE Design Automation Conference (DAC).
IEEE, 1–6.

[16] Kevin Fu and Wenyuan Xu. 2018. Risks of trusting the physics of sensors.
Commun. ACM 61, 2 (2018), 20–23.

[17] Joshua Garcia, Yang Feng, Junjie Shen, Sumaya Almanee, Yuan Xia, Chen, and Qi
Alfred. 2020. A comprehensive study of autonomous vehicle bugs. In Proceedings
of the ACM/IEEE 42nd International Conference on Software Engineering. 385–396.

[18] Andreas Geiger, Philip Lenz, and Raquel Urtasun. 2012. Are we ready for au-
tonomous driving? the kitti vision benchmark suite. In Proceedings of the 2012
IEEE conference on computer vision and pattern recognition. IEEE, 3354–3361.

[19] Jairo Giraldo, Alvaro Cardenas, Murat Kantarcioglu, and Jonathan Katz. 2020. Ad-
versarial Classification Under Differential Privacy. In Proceedings of the Network
and Distributed Systems Security (NDSS) Symposium 2020.

[20] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).

[21] Chuan Guo, Jacob Gardner, Yurong You, Andrew Gordon Wilson, and Kilian
Weinberger. 2019. Simple black-box adversarial attacks. In Proceedings of the
International Conference on Machine Learning. PMLR, 2484–2493.

[22] Jun Han, Madhumitha Harishankar, Xiao Wang, Albert Jin Chung, and Patrick
Tague. 2017. Convoy: Physical context verification for vehicle platoon admission.
In Proceedings of the 18th International Workshop on Mobile Computing Systems
and Applications. 73–78.

[23] Zhongyuan Hau, Kenneth T Co, Soteris Demetriou, and Emil C Lupu. 2021. Object
removal attacks on lidar-based 3d object detectors. arXiv preprint arXiv:2102.03722
(2021).

[24] David Ke Hong, John Kloosterman, Yuqi Jin, Yulong Cao, Qi Alfred Chen, Scott
Mahlke, and Z Morley Mao. 2020. AVGuardian: Detecting and Mitigating Publish-
Subscribe Overprivilege for Autonomous Vehicle Systems. In Proceedings of the
2020 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 445–459.

[25] Shengtuo Hu, Qi Alfred Chen, Jiwon Joung, Can Carlak, Yiheng Feng, Z Morley
Mao, and Henry X Liu. 2020. CVShield: Guarding Sensor Data in Connected
Vehicle with Trusted Execution Environment. In Proceedings of the Second ACM
Workshop on Automotive and Aerial Vehicle Security. 1–4.

[26] Kai Jansen, Matthias Schäfer, Daniel Moser, Vincent Lenders, Christina Pöpper,
and Jens Schmitt. 2018. Crowd-gps-sec: Leveraging crowdsourcing to detect
and localize gps spoofing attacks. In Proceedings of the 2018 IEEE Symposium on
Security and Privacy (SP). IEEE, 1018–1031.

[27] Yunhan Jia Jia, Yantao Lu, Junjie Shen, Qi Alfred Chen, Hao Chen, Zhenyu Zhong,
and Tao Wei Wei. 2020. Fooling detection alone is not enough: Adversarial attack
against multiple object tracking. In Proceedings of the International Conference on
Learning Representations (ICLR’20).

[28] Kaidi Jin, Tianwei Zhang, Chao Shen, Yufei Chen, Ming Fan, Chenhao Lin, and
Ting Liu. 2020. A unified framework for analyzing and detecting malicious
examples of dnn models. arXiv preprint arXiv:2006.14871 (2020).

[29] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar
Beijbom. 2019. Pointpillars: Fast encoders for object detection from point clouds.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
12697–12705.

[30] Daniel Liu, Ronald Yu, and Hao Su. 2019. Extending adversarial attacks and
defenses to deep 3d point cloud classifiers. In Proceedings of 2019 IEEE International
Conference on Image Processing (ICIP). IEEE, 2279–2283.

[31] Thien Duc Nguyen, Phillip Rieger, Hossein Yalame, Helen Möllering, Hossein
Fereidooni, Samuel Marchal, Markus Miettinen, Azalia Mirhoseini, Ahmad-Reza
Sadeghi, Thomas Schneider, et al. 2021. FLGUARD: Secure and Private Federated
Learning. arXiv preprint arXiv:2101.02281 (2021).

[32] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik,
and Ananthram Swami. 2016. Practical black-box attacks against deep learning
systems using adversarial examples. arXiv preprint arXiv:1602.02697 1, 2 (2016),
3.

[33] Nicolas Papernot, PatrickMcDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik,
and Ananthram Swami. 2016. The limitations of deep learning in adversarial
settings. In Proceedings of 2016 IEEE European symposium on security and privacy
(EuroS&P). IEEE, 372–387.

[34] Charles R Qi, Wei Liu, ChenxiaWu, Hao Su, and Leonidas J Guibas. 2018. Frustum
pointnets for 3d object detection from rgb-d data. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 918–927.

[35] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. 2017. Pointnet: Deep
learning on point sets for 3d classification and segmentation. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 652–660.

[36] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. 2017. Pointnet++:
Deep hierarchical feature learning on point sets in a metric space. In Proceedings
of the Advances in neural information processing systems. 5099–5108.

[37] Raul Quinonez, Jairo Giraldo, Luis Salazar, Erick Bauman, Alvaro Cardenas, and
Zhiqiang Lin. 2020. {SAVIOR}: Securing Autonomous Vehicles with Robust
Physical Invariants. In Proceedings of the 29th {USENIX} Security Symposium
({USENIX} Security 20). 895–912.

[38] Kui Ren, Qian Wang, Cong Wang, Zhan Qin, and Xiaodong Lin. 2019. The
security of autonomous driving: Threats, defenses, and future directions. Proc.
IEEE 108, 2 (2019), 357–372.

[39] Neetesh Saxena and Bong Jun Choi. 2016. Authentication scheme for flexible
charging and discharging of mobile vehicles in the V2G networks. IEEE Transac-
tions on Information Forensics and Security 11, 7 (2016), 1438–1452.

[40] Neetesh Saxena, Santiago Grijalva, Victor Chukwuka, and Athanasios V Vasilakos.
2017. Network security and privacy challenges in smart vehicle-to-grid. IEEE
Wireless Communications 24, 4 (2017), 88–98.

[41] Junjie Shen, Jun Yeon Won, Zeyuan Chen, and Qi Alfred Chen. 2020. Drift
with Devil: Security of Multi-Sensor Fusion based Localization in High-Level
Autonomous Driving under {GPS} Spoofing. In Proceedings of the 29th {USENIX}
Security Symposium ({USENIX} Security 20). 931–948.

[42] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. 2019. Pointrcnn: 3d object
proposal generation and detection from point cloud. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 770–779.

[43] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. 2019. One pixel
attack for fooling deep neural networks. IEEE Transactions on Evolutionary
Computation 23, 5 (2019), 828–841.

[44] Takeshi Sugawara, Benjamin Cyr, Sara Rampazzi, Daniel Genkin, and Kevin Fu.
2020. Light commands: laser-based audio injection attacks on voice-controllable
systems. In Proceedings of the 29th {USENIX} Security Symposium ({USENIX}
Security 20). 2631–2648.

[45] Jiachen Sun, Yulong Cao, Qi Alfred Chen, and Z Morley Mao. 2020. Towards
Robust LiDAR-based Perception in Autonomous Driving: General Black-box
Adversarial Sensor Attack and Countermeasures. In Proceedings of 29th {USENIX}
Security Symposium ({USENIX} Security 20). 877–894.

https://www.bbc.com/news/technology-54476524
https://www.bbc.com/news/technology-54476524

[46] Mingshun Sun, Ali Al-Hashimi, Ming Li, and Ryan Gerdes. 2020. Impacts of
constrained sensing and communication based attacks on vehicular platoons.
IEEE transactions on vehicular technology 69, 5 (2020), 4773–4787.

[47] Mingshun Sun, Ming Li, and Ryan Gerdes. 2017. A data trust framework for
VANETs enabling false data detection and secure vehicle tracking. In Proceedings
of the 2017 IEEE Conference on Communications and Network Security (CNS). IEEE,
1–9.

[48] Anam Tahir, Jari Böling, Mohammad-Hashem Haghbayan, Hannu T Toivonen,
and Juha Plosila. 2019. Swarms of unmanned aerial vehicles—a survey. Journal
of Industrial Information Integration 16 (2019), 100106.

[49] Tzungyu Tsai, Kaichen Yang, Tsung-Yi Ho, and Yier Jin. 2020. Robust adversarial
objects against deep learning models. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 34. 954–962.

[50] James Tu, Huichen Li, Xinchen Yan, Mengye Ren, Yun Chen, Ming Liang, Eilyan
Bitar, Ersin Yumer, and Raquel Urtasun. 2021. ExploringAdversarial Robustness of
Multi-Sensor Perception Systems in Self Driving. arXiv preprint arXiv:2101.06784
(2021).

[51] James Tu, Mengye Ren, Sivabalan Manivasagam, Ming Liang, Bin Yang, Richard
Du, Frank Cheng, and Raquel Urtasun. 2020. Physically Realizable Adversarial
Examples for LiDAR Object Detection. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 13716–13725.

[52] Danilo Vasconcellos Vargas and Jiawei Su. 2020. Understanding the one-pixel at-
tack: Propagationmaps and locality analysis. In Proceedings of the CEURWorkshop
Proceedings, Vol. 2640. CEUR-WS.

[53] Qian Wang, Baolin Zheng, Qi Li, Chao Shen, and Zhongjie Ba. 2020. Towards
Query-Efficient Adversarial Attacks Against Automatic Speech Recognition Sys-
tems. IEEE Transactions on Information Forensics and Security 16 (2020), 896–908.

[54] Shu Wang, Jiahao Cao, Xu He, Kun Sun, and Qi Li. 2020. When the Differences in
Frequency Domain are Compensated: Understanding and Defeating Modulated
Replay Attacks on Automatic Speech Recognition. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security. 1103–1119.

[55] Shu Wang, Jiahao Cao, Kun Sun, and Qi Li. 2020. {SIEVE}: Secure In-Vehicle
Automatic Speech Recognition Systems. In Proceedings of the 23rd International
Symposium on Research in Attacks, Intrusions and Defenses ({RAID} 2020). 365–
379.

[56] Haohuang Wen, Qi Alfred Chen, and Zhiqiang Lin. 2020. Plug-N-pwned: Com-
prehensive vulnerability analysis of OBD-II dongles as a new over-the-air attack
surface in automotive IoT. In Proceedings of the 29th {USENIX} Security Sympo-
sium ({USENIX} Security 20). 949–965.

[57] Matthew Wicker and Marta Kwiatkowska. 2019. Robustness of 3d deep learning
in an adversarial setting. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 11767–11775.

[58] Chong Xiang, Charles R Qi, and Bo Li. 2019. Generating 3d adversarial point
clouds. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 9136–9144.

[59] Chaowei Xiao, Dawei Yang, Bo Li, Jia Deng, and Mingyan Liu. 2019. Meshadv:
Adversarial meshes for visual recognition. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 6898–6907.

[60] Wenyuan Xu, Chen Yan, Weibin Jia, Xiaoyu Ji, and Jianhao Liu. 2018. Analyzing
and enhancing the security of ultrasonic sensors for autonomous vehicles. IEEE
Internet of Things Journal 5, 6 (2018), 5015–5029.

[61] Wataru Yamada, Kazuhiro Yamada, Hiroyuki Manabe, and Daizo Ikeda. 2017.
iSphere: self-luminous spherical drone display. In Proceedings of the 30th Annual
ACM Symposium on User Interface Software and Technology. 635–643.

[62] Chen Yan, Wenyuan Xu, and Jianhao Liu. 2016. Can you trust autonomous
vehicles: Contactless attacks against sensors of self-driving vehicle. Def Con 24,
8 (2016), 109.

[63] Bin Yang, Wenjie Luo, and Raquel Urtasun. 2018. Pixor: Real-time 3d object
detection from point clouds. In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition. 7652–7660.

[64] Kaichen Yang, Tzungyu Tsai, Honggang Yu, Tsung-Yi Ho, and Yier Jin. 2020.
Beyond Digital Domain: Fooling Deep Learning Based Recognition System in
Physical World. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 34. 1088–1095.

[65] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. 2019. Adversarial examples:
Attacks and defenses for deep learning. IEEE transactions on neural networks and
learning systems 30, 9 (2019), 2805–2824.

[66] Guoming Zhang, Chen Yan, Xiaoyu Ji, Tianchen Zhang, Taimin Zhang, and
Wenyuan Xu. 2017. Dolphinattack: Inaudible voice commands. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
103–117.

[67] Qiang Zhang, Jiancheng Yang, Rongyao Fang, Bingbing Ni, Jinxian Liu, and
Qi Tian. 2019. Adversarial attack and defense on point sets. arXiv preprint
arXiv:1902.10899 (2019).

[68] Zihan Zhang, Mingxuan Liu, Chao Zhang, Yiming Zhang, Zhou Li, Qi Li, Haixin
Duan, and Donghong Sun. [n. d.]. Argot: Generating Adversarial Readable Chi-
nese Texts. ([n. d.]).

[69] Yue Zhao, Yuwei Wu, Caihua Chen, and Andrew Lim. 2020. On isometry robust-
ness of deep 3d point cloud models under adversarial attacks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 1201–1210.

[70] Tianhang Zheng, Changyou Chen, Junsong Yuan, Bo Li, and Kui Ren. 2019.
Pointcloud saliency maps. In Proceedings of the IEEE International Conference on
Computer Vision. 1598–1606.

[71] Jinli Zhong, Suguo Du, Lu Zhou, Haojin Zhu, Fan Cheng, Cailian Chen, and
Qingshui Xue. 2017. Security modeling and analysis on intra vehicular network.
In Proceedings of the 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall).
IEEE, 1–5.

[72] Hang Zhou, Dongdong Chen, Jing Liao, Kejiang Chen, Xiaoyi Dong, Kunlin
Liu, Weiming Zhang, Gang Hua, and Nenghai Yu. 2020. LG-GAN: Label Guided
Adversarial Network for Flexible Targeted Attack of Point Cloud Based Deep
Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 10356–10365.

[73] Lu Zhou, Le Yu, Suguo Du, Haojin Zhu, and Cailian Chen. 2018. Achieving
differentially private location privacy in edge-assistant connected vehicles. IEEE
Internet of Things Journal 6, 3 (2018), 4472–4481.

[74] Yin Zhou and Oncel Tuzel. 2018. Voxelnet: End-to-end learning for point cloud
based 3d object detection. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 4490–4499.

APPENDIX
A EFFICIENT PROBING ALGORITHM
The algorithm of the Efficient Probing is summarized in Algorithm 3.

Algorithm 3: Efficient Probing algorithm
Input: the surrogate point cloud 𝐷∗; parameter 𝑃 ,𝑄 , and 𝑆 .
Initial 𝑋𝑎𝑙𝑙 ← ∅, 𝑋𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 ← ∅;
Initial 𝑋 ′ ← random𝑄 locations from uniform distribution;
// Probing based on adversarial scores

for each iteration 𝑝 ∈ {1, 2, ..., 𝑃 } do
repeat

Randomly generate𝑄 locations �̂� based on Gaussian
distribution, the means of the Gaussian distribution are
the xyz-coordinates of 𝑋 ′;

until 𝐿 (�̂�) < 𝐿 (𝑋𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠) ;
calculate approximated adversarial scores of each location in �̂� :
�̃� (𝑥), 𝑥 ∈ �̂� ;
𝑋𝑎𝑙𝑙 ← 𝑋𝑎𝑙𝑙 + �̂� ;
update adversarial scores of all the locations in 𝑋𝑎𝑙𝑙 ;
𝑋 ′ ← the top 𝑆 locations with the highest adversarial scores
among all previously probed locations𝑊 (𝑋𝑎𝑙𝑙) ;
𝑋𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 ← �̂� ;

end
Output: location set �̂�

B EFFECT OF THE INSERTED POINTS ON
THE LEARNED FEATURES

To demonstrate the effect of the inserted points on the learned
features, we visualize the difference between the feature maps
before and after the attack. Figure 15a shows the target vehicle (the
blue points) and the derived adversarial location (the red point),
and Figure 15b shows the feature map difference around the target
vehicle, which is derived by subtracting the feature map without
inserting any point from the map after inserting one point. Each
pixel in Figure 15b indicates the change of feature values around
the corresponding locations in Figure 15a. The red color represents
negative value and the blue color represents positive value. As we
can see, inserting one point around the derived adversarial location
can significantly affect the features around the target.

(a) (b)

Figure 15: The changes of the feature map after inserting
one point around the derived adversarial location.

C ADVERSARIAL LOCATIONS UNDER
DIFFERENT SETTINGS

Here we study another two factors that may affect the adversarial
locations. The two factors are the target vehicle’s size and the street
where the target vehicle is located.

To study the effect of the target vehicle’s size, we divide the
examples into three groups (i.e., small size, middle size, and large
size). The size of a vehicle is defined by the product of its width,
length, and height. As shown in Figure 16a, the distribution of
adversarial locations for different sizes of target vehicle are similar,
and most of the locations are close to the edge of the vehicles even
when the size of the target vehicle varies.

For the streets where the target vehicle is located, we select
three streets from the examples and generate the maps for the
selected targets on each street. For each street, we select target
vehicles that have similar sizes and distances to LiDAR. As shown
in Figure 16b, the distributions of adversarial locations for the
three streets are different. This is mainly because the detection
model takes the LiDAR frames as input, and the LiDAR frames from
different streets could be quite different, which affects the learned
geometric features.

(a) Different sizes (b) Different streets

Figure 16: Adversarial regionmaps under different settings.

D UNIVERSAL ATTACK
In this paper, we also study the universal attack, where the attacker
derives some universal critical locations based on which he can
achieve the attack goal for any target vehicle in any scenario. These
universal critical locations are the relative locations to the target
vehicle’s center. To generate universal critical locations, we use
the whole dataset as the original data and measure the adversarial
impact of locations using the summation of the values of 𝐿(·) for
all the examples.

Based on the findings in Section 8.2, we consider the area around
the edge of the vehicle, because it is more critical to the detection.
Specifically, we search for the critical locations in a 2𝐿 ∗ 2𝑊 ∗ 1𝑚
area above the vehicle, where 𝐿 and𝑊 are the average length and
width of the vehicles. In the Location Probing step, the probability
of generating probed locations around the edge of the vehicle is
assigned higher than other areas. We set 𝑄 to 50, and 𝑃 to 5000.

We conduct experiment on the KITTI dataset and the result show
that the attack success rate of the universal attack is 72.69% when
the number of critical locations is 7. This indicates the attacker can
use 7 objects to perform the attack and may cause potential colli-
sions in any scenario. Please note that this is the maximum number
of locations the attacker needs to achieve the attack goal in all
scenarios. In some scenarios, if the attacker knows the surrounding
environment before launching the attack, he could use only some
of these universal critical locations. Specifically, he could obtain the
surrogate LiDAR point cloud data by following the same process in
Section 7, and then select some universal critical locations using
the Location Selection algorithm in Section 5.2.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 LiDAR Perception in Autonomous Driving
	2.2 Adversarial Attacks

	3 Adversarial Locations
	4 Problem Definition
	5 Methodology
	5.1 Location Probing
	5.2 Location Selection
	5.3 Efficient Probing Algorithm
	5.4 How to Perform the Attacks in Practice?

	6 Experiments in Digital World
	6.1 Experimental Setting
	6.2 Overall Performance
	6.3 Attack Efficiency
	6.4 Robustness Analysis
	6.5 Comparison with Existing Attack
	6.6 Performance on Different Detection Models

	7 Experiments in Physical World
	7.1 Experimental Setting
	7.2 Results Visualization
	7.3 Robustness in Physical World

	8 Analysis for Adversarial Locations
	8.1 Adversarial Region Map
	8.2 Experiments for Adversarial Region Map

	9 Discussion
	9.1 Potential Defense Strategies
	9.2 Limitations and Future Work

	10 Related Work
	10.1 Vehicular System Security
	10.2 3D Adversarial Attacks

	11 Conclusions
	12 Acknowledgments
	References
	A Efficient Probing Algorithm
	B Effect of the Inserted Points on the Learned Features
	C Adversarial locations under different settings
	D Universal Attack

