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ABSTRACT
Today, most autonomous vehicles (AVs) rely on LiDAR (Light De-
tection and Ranging) perception to acquire accurate information
about their immediate surroundings. In LiDAR-based perception
systems, semantic segmentation plays a critical role as it can divide
LiDAR point clouds into meaningful regions according to human
perception and provide AVs with semantic understanding of the
driving environments. However, an implicit assumption for existing
semantic segmentation models is that they are performed in a reli-
able and secure environment, which may not be true in practice. In
this paper, we investigate adversarial attacks against LiDAR seman-
tic segmentation in autonomous driving. Specifically, we propose a
novel adversarial attack framework based on which the attacker
can easily fool LiDAR semantic segmentation by placing some sim-
ple objects (e.g., cardboard and road signs) at some locations in the
physical space. We conduct extensive real-world experiments to
evaluate the performance of our proposed attack framework. The
experimental results show that our attack can achieve more than
90% success rate in real-world driving environments. To the best of
our knowledge, this is the first study on physically realizable ad-
versarial attacks against LiDAR point cloud semantic segmentation
with real-world evaluations.
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1 INTRODUCTION
Recent years have witnessed the rapid development of autonomous
driving. Many autonomous vehicles (AVs), also known as self-
driving cars, have already been operated on public roads, such
as Baidu’s Apollo Robotaxi [3] and Waymo’s self-driving taxis [4].
For autonomous driving systems, one of the most critical tasks
is perception, which aims to collect information and extract rele-
vant knowledge from surrounding driving environment using the
equipped sensors like cameras, radar, and LiDAR. Among those
sensors, LiDAR is particularly attractive because it can collect dense,
geo-referenced and accurate 3D point cloud data, which directly pro-
vides a precise 3D representation of the driving environment. Cur-
rently, the vast majority of self-driving car companies rely on LiDAR
to build reliable perception systems for commercial AVs [2, 4, 34].

In LiDAR-based perception systems, a fundamental task is Li-
DAR point cloud semantic segmentation which intends to achieve
semantic scene understanding in autonomous driving. The goal of
point cloud semantic segmentation is to divide the point clouds
into meaningful regions according to human perception and label
each point with a class such as road, vehicle, building, and grass.

Due to its superior capability of providing semantic scene un-
derstanding, LiDAR point cloud segmentation has become an key
integral part of autonomous driving and enabled many applications.
For example, one major application of point cloud segmentation
is to identify obstacles on the road including vehicles, pedestrians
and motorcycles [16, 17, 20]. Point cloud segmentation can pro-
vide accurate information of the obstacles and their properties (e.g.,
obstacle classes), which is critical for obstacle avoidance. Many
state-of-the-art obstacle detection systems [51, 58] such as the Li-
DAR obstacle perception system in Baidu Apollo [2] adopt point
cloud segmentation as a prerequisite step to segment foreground
points from background points. Another application of point cloud
segmentation is to extract critical information about the bound-
ary of drivable and non-drivable areas such as parking areas and
roadside grass [5, 27]. This road boundary information is essential
for vehicle path planning [43, 47, 67, 81]. When the AV drives in
unmapped areas where high definition (HD) maps are not avail-
able, or there are some changes of road environment that are not
reported promptly to HD maps [18], it has to rely on semantic
segmentation to understand the driving environments. In addition,
point cloud semantic segmentation can also be used to reconstruct
the 3D environments from sparse point cloud data [12, 20], and
model road-side artifacts such as lampposts and traffic signs [26].

Despite the wide deployment of point cloud segmentation mod-
els in autonomous driving, an implicit assumption for these models
is that they are performed in a reliable and secure environment.
However, as semantic segmentation plays an increasingly critical
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role in AV systems, the risk of malicious attack increases. The state-
of-the-art semantic segmentation models mainly use deep neural
networks (DNNs) to process LiDAR point clouds. DNNs have been
demonstrated to be vulnerable to adversarial attacks when taking
images as inputs, where an attacker can drastically change the out-
put predictions by introducing a small perturbation to the input
pixels [22, 49]. It is entirely possible for an attacker to perform
such kind of attacks against the deep learning-based segmentation
models by making small changes to the driving environments (e.g.,
placing some objects on the roadside), which may further fool the
LiDAR perception systems of the victim AVs and cause catastrophic
consequences. Thus, to well understand the performance of seman-
tic segmentation models in adversarial driving environments, it is
essential to investigate adversarial attacks against these models.

In this paper, we conduct the first study on the vulnerability of
LiDAR point cloud semantic segmentation. We explore the pos-
sibility of performing practical and effective adversarial attacks
against LiDAR point cloud segmentation model in real-world driv-
ing environments, where the attacker can maliciously change the
perception results of the victim AV to his/her desired results, such
as changing the vehicle to road or changing the road to vegetation.
By attacking LiDAR semantic segmentation, the attacker is able to
perform various types of attacks and achieve various attack goals
such as collisions, sudden stops or direction changes of the victim
AV. Specifically, we propose a novel attack framework based on
which the attacker can derive some adversarial locations in the
physical space. Through placing some simple objects (also called
adversarial objects) such as road signs and cardboard at those lo-
cations, the attacker can easily fool the point cloud segmentation
model adopted by a victim AV. Here the adversarial objects could
be in any shape as long as it could reflect laser. In this framework,
we take into account several attack challenges in physical world
such as large 3D searching space and location errors of adversar-
ial objects. To address the above challenges, the proposed attack
framework employs a novel Semantic Misleading approach that can
guide the search of reasonable locations for adversarial objects in
physical world.

In order to evaluate the performance of our proposed attack
framework, we conduct extensive experiments on both a real-world
LiDAR point cloud segmentation system and a public dataset gen-
erated by a commonly used automotive LiDAR. The experimental
results demonstrate that our framework not only is general enough
to be applied to different types of attack scenarios and segmentation
models, but also can achieve high attack success rate in both the
digital and physical worlds. To further demonstrate the effective-
ness of our proposed attack, we attack several 3D object detection
models such as the perception system of Baidu Apollo. To the best
of our knowledge, this is the first study on physically realizable
adversarial attacks against LiDAR point cloud semantic segmentation
with real-world evaluations.

2 RELATEDWORK
2.1 Vehicular System Security
There are extensive prior works that investigate the security issues
of vehicular systems [7, 14, 19, 25, 28, 30, 35, 38, 39, 39, 45, 55, 77].
For AVs, many attack methods have been developed to attack

their sensors and perception systems [6, 23, 31, 32, 54, 56, 75, 75].
However, most existing attacks against perception systems in au-
tonomous driving focus on camera-based perception [29, 73].

Although there are a few existing works that study the security
issues of LiDAR-based perception, they only focus on the attacks
against LiDAR obstacle detection [9, 10, 62, 66, 83]. Different from
these works, we aim to attack LiDAR point cloud semantic segmen-
tation, which is a more general and fundamental technique adopted
in many autonomous driving applications. By fooling the point
cloud segmentation models, our attack can influence not only the
obstacle detection, but also many other applications in autonomous
driving such as road boundary perception and scene reconstruc-
tion. Thus, attacking LiDAR semantic segmentation can bring more
security threats to AVs, and has broader impact to the safety of AVs.

In addition, existing attacks against LiDAR obstacle perception
are either not feasible enough or not flexible enough when being
performed in physical world. The authors in [9, 62] propose to spoof
the LiDAR sensor through strategically transmitting laser signals
to the victim vehicle’s LiDAR sensor. However, it may be difficult to
perform the proposed attacks in real world because the victim AV
is usually moving and they require the attacker to aim at the LiDAR
sensor with high precision in a dynamic manner. Besides, some
special equipment is needed to generate the laser signals, which
makes it less flexible to perform this kind of attacks. The authors
in [10, 66] generate some adversarial objects that are placed on the
top of the target vehicle or on the road. However, these objects are
required to have specific shapes, which limits the flexibility of the
attack. Besides, such adversarial objects are suspicious to human
eyes because of their abnormal shapes. And the scanned point
clouds generated by the adversarial objects may not always be in
the desired shapes because of LiDAR scanning errors, manufacture
errors, and location errors. This inaccuracy of point cloud shape
may fail the attack, and generating such specifically shaped objects
with high precision is challenging in practice.

Unlike these works, our proposed attack can be easily performed
by placing some objects around some specific locations, and these
objects can be in any shapes, which makes the attack more flexible.
Since the attacker does not need to care about the shape of the
adopted objects, he can use some common objects such as traffic
signs and advertisement board to make the attack more stealthy.
Although [83] also uses arbitrary objects such as drones to attack
AVs, it only considers object detection and aim to hide a vehicle
from the object detection model. In this paper, we aim to attack
a more fundamental task, LiDAR semantic segmentation, which
can influence the perception of both vehicles and other structures
such as road, vegetation, and buildings. Besides, these existing
attack methods are not general enough to be applied to LiDAR
semantic segmentation because they can only hide existing vehicles
or creating fake vehicles and fail to change the perception results
of other structures such as road, vegetation, and buildings.

2.2 Adversarial Attacks against Semantic
Image Segmentation

There are some existing works that generate adversarial examples
to fool image-based semantic segmentation models. These methods
propose to make small perturbations on each pixel values in an
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image [24, 71]. However, they only focus on 2D adversarial attack
and their methods cannot be directly applied to 3D adversarial
attack on LiDAR point cloud.

2.3 3D Adversarial Attacks
3D adversarial attacks have drawn much attention recently. Specif-
ically, point cloud classification models are proved to be vulnerable
to 3D adversarial attacks [68, 70, 80]. Point cloud classification aims
to label the whole point cloud with a class such as lamp or desk.
In this paper, we focus on a different task, i.e., LiDAR point cloud
segmentation, whose goal is to label each point in the point cloud
with a class. In addition, although the attack methods designed
in aforementioned point cloud classification work can achieve the
attack goal in digital world, the generated adversarial examples
are not always physically realizable. In contrast, we investigate
practical and effective adversarial attacks that can be performed in
real-world driving scenarios.

3 BACKGROUND
3.1 Point Cloud Segmentation in Autonomous

Driving
The goal of point cloud semantic segmentation is to divide the point
clouds into meaningful regions according to human perception. It
labels each point with a class such as ground, vehicle, trees, and so
on. The task can be described as: given a set of points {𝑥1, 𝑥2, ..., 𝑥𝑛}
and candidate labels {𝑦1, 𝑦2, ..., 𝑦𝑘 }, assign each point 𝑥𝑖 with one
of the labels 𝑦 𝑗 .

Deep learning techniques have made tremendous progress in
point cloud semantic segmentation. However, traditional CNN-
based models are not suitable to deal with irregular point cloud
inputs. To address this challenge, many existing approaches trans-
form the irregular point clouds into regular representations such
as 3D voxel grids [78] or projections [69] before feeding them to
convolution networks. PointNet [52] is a pioneering network ar-
chitecture for segmentation that takes raw point clouds as input.
The network applies a set of transformation subnetworks and Multi
Layer Perceptrons (MLPs) to generate point-wise features. The
point-wise features are then aggregated to global features using
Max-Pooling layers. Then it concatenates the global features with
the point-wise features and generates output logits for each point.
Various point cloud segmentation models are proposed based on
PointNet, such as PointNet++ [53] and PointASNL [74]. Besides,
SqueezeSeg [69] is also a state-of-the-art point cloud segmentation
model, which projects point cloud into a spherical image.

3.2 Adversarial Attacks
Deep learning techniques benefit a wide spectrum of applications.
However, they have been proved to be vulnerable to adversarial
attacks [13, 36, 37, 44, 50, 57], especially some specially crafted
adversarial examples [15, 42, 46, 59, 63, 72, 79]. The adversarial
examples generated by adding some small perturbations on the
original input examples [22, 49], can fool the deep learning models
with high confidence.

For a deep learning model𝑀 , original input data 𝑥 and its corre-
sponding label 𝑦, the adversarial attack aim to find an adversarial

(a) Before attack (b) After attack

Figure 1: Vehicle/obstacle hiding attack. By placing some
adversarial objects around some locations, the attacker can
hide the parked car or other obstacles from the victim AV.

(a) Before attack (b) After attack

Figure 2: Road surface changing attack. By placing some
adversarial objects around some locations, the attacker can
change the road surface to roadside vegetation.

example 𝑥 ′ which appears similar to 𝑥 so that 𝑀 (𝑥 ′) ≠ 𝑦. The
adversarial example 𝑥 ′ is usually generated by solving an optimiza-
tion problem with the objective loss function that measures both
attack effectiveness and perturbation magnitude [11, 64, 76].

4 ATTACK SCENARIO AND THREAT MODEL
4.1 Attack Scenario
In this paper, we consider the AVs that make use of 3D point cloud
segmentation models to understand the driving environments. The
attack goal is to change the perception results from the segmenta-
tion models. Considering the common applications of point cloud
segmentation, we focus on two types of attack scenarios: vehi-
cle/obstacle hiding attack and road surface changing attack.

4.1.1 Vehicle/obstacle Hiding Attack. In this attack, we consider a
driving environmentwhere there is a car parking on the road/parking
lot. The parked car could be parked by an attacker intentionally or
it could be a car stopped at the traffic light. As shown in Figure 1,
the attacker aims to hide the parked car from the LiDAR-based per-
ception system of a coming victim AV by adding some adversarial
objects around the car or on the roadside. This kind of attacks may
result in a rear-end collision and cause catastrophic consequences.

4.1.2 Road Surface Changing Attack. In road surface changing
attack, we consider a driving environment where the victim AV is
driving on the road as shown in Figure 2. The goal of the attack
is to change the road surface in front of the victim AV to other
things such as vegetation (e.g., grass) by adding some adversarial
objects. These adversarial objects could be located on the roadside
or sidewalk. This kind of attack may result in a sudden stop or
driving direction changing, and further cause traffic accidents.

4.2 Threat Model
We consider an attack in which the attacker has the ability to
place some adversarial objects around some specific locations in
the targeted driving environments. To achieve the attack goal, the
attacker could use some simple objects to perform the attack. The
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(a) Consecutive LiDAR frames (b) Different directions

Figure 3: The victim AVmay come from different directions
and collect a series of consecutive LiDAR frames.
adversarial objects could be in any shape as long as they could
reflect LiDAR laser. The number of those objects is pre-determined
by the attacker.

In addition, we consider both white-box attack and black-box
attack. For the white-box attack, we assume that the attacker has
full access to the machine learning model and the perception system
of the victim AV. Since it is entirely possible for the attacker to have
a AV with the same model, he could obtain the white-box access by
using reverse engineering techniques. For the black-box attack, the
attacker does not have access to the machine learning model used
by the perception system. He could only query the model and get
the outputs, which is the same assumption made by most existing
black-box attack methods [33, 40, 41, 48, 63]. Besides, for both types
of attacks, we assume that the attacker could collect sensory data to
generate 3D point clouds in different driving environments using a
similar LiDAR sensor as that adopted by the victim AV.

5 ATTACK OVERVIEW
5.1 Attack Challenges
In practice, the victim AV is usually moving when the attacker
performs the attacks. As shown in Figure 3a, the victim AV can
collect a series of consecutive frames of point cloud data as it moves
forward and generate perception result for each frame. Attacking a
single frame is not enough to ensure a successful attack goal. Even
the attacker changes the perception result for one frame, the AV
system might regard it as a system error and ignore it. To achieve
the attack goal, the attacker needs to change the perception results
for all consecutive frames. In addition, the attacker usually cannot
predict the driving behavior of the victim AV before performing
the attacks and it may come from different directions as shown in
Figure 3b. So the added adversarial objects should be able to fool
the victim AV no matter which direction it comes from.

Besides, generating robust 3D adversarial examples for point
cloud is more difficult than generating 2D adversarial examples
for images [70]. The searching space in our problem is very large
and the adversarial objects can be anywhere in the space, which
bring new challenges to find the optimal solutions in 3D space. Also,
the consecutive frames and unpredictable driving behavior of the
victim AV bring extra challenges. Existing adversarial attacks on
point cloud data fail to address this problem.

Furthermore, when performing the attacks in physical world,
it is usually difficult to exactly place the adversarial objects at
the derived locations. The location errors may affect the point
cloud scanned by LiDAR and further affect the attack results. Thus,
the attack method should also be robust to location errors of the
adversarial objects. Besides, the derived locations for adversarial
objects should be reasonable. It should be easy for the attacker to
place objects at these locations. For example, these locations should

Figure 4: Attack framework.

not be underground or too high above the ground. In addition, they
should not be occluded by other objects. Otherwise, they can not
be observed by the LiDAR sensor.

5.2 Attack Framework
To address the above challenges, we propose a general attack frame-
work based on which the attacker can fool the segmentation models
and make the victim AV misunderstand the driving environments.
Figure 4 shows an overview of our proposed attack framework.

Before performing the attacks, the attacker first imitates the
possible driving behavior of the victim AV (e.g., driving directions)
and collects corresponding 3D point cloud data in the targeted
driving environments (as shown in Figure 1 and Figure 2). The
collected point clouds are called original point clouds, each frame of
which describes a possible scene observed by the victim AV before
the attack. By imitating the possible driving behavior of the victim
AV, the attacker could collect all possible point cloud data that will
be collected by the victim AV. Based on these data, the attacker
could derive how to add the adversarial objects so that the victim AV
can be fooled in all consecutive frames no matter which direction
it comes from.

After collecting the original point cloud data, the next step for
the attacker is to derive the locations of the adversarial objects
(also called adversarial locations) in physical world. Specifically,
we represent each object as a random point cluster in the point
clouds. The shape and the number of points for each point cluster
are both random, which allows the attacker to use arbitrary objects
to perform the attacks. The injected point clusters are kept random
during the whole process (randomly generated in each iteration).
The intuition behind this representation is that each adversarial
object creates a point cluster in LiDAR scan. If we find the locations
at which placing random adversarial clusters achieves the attack
goal, placing any adversarial objects at these locations could also
achieve the attack goal.

These point clusters are first initialized and added to the original
point clouds. Then the attacker derives their optimal locations (the
locations of cluster centers) based on which the adopted point
cloud segmentation model can be fooled. In this paper, the process
of deriving these optimal locations is called adversarial location
generation. Please note that all the above steps can be conducted
offline. After deriving the locations of adversarial point clusters,
the attacker could find out the corresponding locations in physical
world and place adversarial objects at these locations to perform
the attacks when the victim AV is approaching.

However, the generation of adversarial point clusters (or deriva-
tion of their optimal locations) is not easy since we need to address
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Figure 5: Overview of adversarial location generation.

many challenges as mentioned in Section 5.1. To address these chal-
lenges, we propose a novel modular based on semantic misleading
approach to generate the adversarial point clusters’ locations.

6 ADVERSARIAL LOCATION GENERATION
Figure 5 shows the overview of our proposed adversarial location
generation modular. Given the input of original point clouds, we
combine them with point clusters to get the adversarial point clouds,
which are fed into the point cloud segmentation model to gener-
ate segmentation results. The point cloud segmentation model is
adopted by the victim AV and can not be changed during the at-
tack process. Recall that the attack goal is to let the segmentation
model misclassify the target points (e.g., the points belonging to
the parked car and the adversarial clusters) as the target label (e.g.,
ground). Here we introduce a segmentation loss 𝐿𝑠𝑒𝑔 to measure the
distance between the predicted label of target points and the target
label. Minimizing the total segmentation loss for all the original
point clouds can help us derive the locations of adversarial point
clusters that work in all possible scenes observed by the victim AV.

However, as described in Section 5.1, our attack scenario is much
more complicated compared with existing attacks on point cloud
data. Only minimizing the segmentation loss may not be enough
to derive the optimal locations of adversarial point clusters. To
address this challenge, we propose a semantic misleading method
to guide the finding of the optimal locations. The basic idea of this
method is to make the semantic feature of adversarial point clouds
similar to that of the reference point clouds. The reference point
clouds describe the scenes that the attacker desired: for vehicle
hiding attack, the scene has no car on the road; for road surface
changing attack, the scene has lots of vegetation in front of the
LiDAR sensor. The reference point clouds can be easily collected by
the attacker or obtained from public 3D point cloud datasets (e.g.,
the SemanticKITTI dataset [5]). We use the same feature extractor
to extract the semantic features of the adversarial point clouds
and the reference point clouds. The semantic loss 𝐿𝑠𝑒𝑚 is used to
measure the similarity between the extracted features of the two
types of point clouds.

In addition, we introduce an occlusion loss 𝐿𝑜𝑐𝑐 and some con-
strains to guarantee the derived locations are reasonable so that
the attacker could easily add adversarial objects in the physical
space. Through optimizing the total loss 𝐿𝑡 = 𝐿𝑠𝑒𝑔 +𝛼𝐿𝑠𝑒𝑚 + 𝛽𝐿𝑜𝑐𝑐 ,
we can generate adversarial locations based on which the attacker

can fool the victim AV. Here 𝛼 and 𝛽 are the pre-defined hyper-
parameters to balance the three losses. Besides minimizing the total
loss 𝐿𝑡 , we also propose to minimize its gradient 𝐿′𝑡 so that the
attack can be robust to location errors. The reason why we also
minimize 𝐿′𝑡 is that the gradient of a loss function reflects how
the loss changes with respect to small perturbations on the inputs
(in our problem, the inputs are the locations of adversarial point
clusters). By minimizing the gradient, we could find the optimal
values that can tolerate some small perturbations, which helps to
generate adversarial clusters that are robust to location errors. The
details of the modular will be elaborated in the rest of this section.

6.1 Segmentation Loss
Suppose 𝑋 ∗ denotes a frame of the original point clouds. The num-
ber of possible classes (e.g., vehicle, ground, and vegetation) for the
points is 𝐶 . We use 𝑋 = {𝑥𝑛}𝑁𝑛=1 to denote the 𝑁 target points in
a frame that need to be misclassified by the segmentation model,
where 𝑥𝑛 ∈ R3. The ground truth labels of these 𝑁 points are
denoted as 𝐿 = (𝑙1, ..., 𝑙𝑁 ). 𝑓𝑐 (𝑋 ∗, 𝑥𝑛) is the probability that point
𝑥𝑛 belongs to class 𝑐 ∈ [𝐶] (i.e., the 𝑐-th logit of point 𝑥𝑛 be-
fore SoftMax layer), given the input of original point cloud 𝑋 ∗.
𝑋𝑎 = {𝑥𝑎

𝑘
}𝐾
𝑘=1 are 𝐾 adversarial points clusters, and the value of 𝐾

is predefined by the attacker. Each adversarial point cluster is kept
random (re-generated with random number of points and random
shape) during the whole process. To make each random point clus-
ter feasible and reasonable, the maximum number of points in each
point cluster is limited to 10 (i.e., |𝑥𝑎

𝑘
| ≤ 10), and the maximum size

of each point cluster is limited to 0.3𝑚 (i.e., max
𝑎,𝑏∈𝑥𝑎

𝑘

| |𝑎 −𝑏 | |2 ≤ 0.3𝑚).

The goal of the attacker is to make the predicted label of each target
point 𝑥𝑛 become the target label 𝑙 ′𝑛 by adding adversarial point
clusters to the original point clouds, which can be described as:

∀𝑥𝑛 ∈ 𝑋, argmax
𝑐

𝑓𝑐 (𝑋 ∗ ∪ 𝑋𝑎, 𝑥𝑛) = 𝑙 ′𝑛 . (1)

In vehicle hiding attack, the target points are those belonging to
the parked car (labeled as “Vehicle”). The target label is “Ground”.
For road surface changing attack, the target points are the points
belonging to the road in front of the victim AV and target label
is “Vegetation”. To achieve the attack goal, we need to derive the
locations of these adversarial point clusters.

In this paper, a point cluster’s location is represented by its cen-
ter’s location. Since the LiDAR coordinate changes when the victim
AV is moving, it is difficult to directly optimize the 𝑥𝑦𝑧-coordinates
of the adversarial point clusters in the LiDAR coordinate. To ad-
dress this problem, we select a fixed object such as the parked
car or a building as the reference. Then we calculate the relative
locations of adversarial point clusters to a particular part on the
fixed object (e.g.,the back of the parked car). Specifically, we use
𝑂𝑎
𝑘
= (𝑥𝑎

𝑘1, 𝑥
𝑎
𝑘2, 𝑥

𝑎
𝑘3) to denote the relative location of cluster 𝑥𝑎

𝑘
.

As mentioned in [11], directly solving the Eq.(1) is difficult. A
common approach for generating adversarial examples in point
cloud and image classification problems is to maximize the output
confidence of the target label. Since point cloud semantic segmenta-
tion is to classify each individual point, an intuitive approach to mis-
classify an object is to maximize the summation of the confidences
of the target label (e.g., the ground) for all the points belonging to
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this object (e.g., the parked car). However, this intuitive approach
is not suitable to our problem. For the adversarial attacks against
point cloud semantic segmentation model, we aim to maximize
the number of the misclassified points so that we can “hide” the
parked car or “change” the road surface as much as possible. But
maximizing the summation of confidences can not guarantee that
the number of misclassified points is maximized. For example, the
confidence of one point could be very large but the others’ are still
small, which means only one point is misclassified. To address this
problem, we use the following segmentation loss:

𝐿𝑠𝑒𝑔 = −
𝑁∑
𝑛=1

min(0, [𝑓𝑙 ′𝑛 (𝑋
′, 𝑥𝑛) −max

𝑙≠𝑙 ′𝑛
𝑓𝑙 (𝑋 ′, 𝑥𝑛)]), (2)

where 𝑋 ′ = 𝑋 ∗ ∪ 𝑋𝑎 denotes the adversarial point cloud after
adding 𝐾 point clusters, and 𝑙 ′𝑛 is the target label.

The intuition of Eq.(2) is that the loss of the misclassified points
will stay zero and if a target point is not misclassified, its loss will
be positive (the smaller the confidence is, the larger the value is).
Minimizing the segmentation loss can help to maximize the number
of misclassified points.

6.2 Semantic Misleading
As described in Section 5.1, our attack scenario is very challenging
as we consider not only 3D searching space but also the consecu-
tive frames of point clouds and unpredictable driving behavior of
the victim AV. Only optimizing the segmentation loss may not be
enough to derive the optimal locations for adversarial point clusters.
To address this problem, we propose a semantic misleading method
that can guide the finding of the optimal locations.

In this method, we aim to change the segmentation model’s un-
derstanding of the whole scene. Specifically, we want the neural
network misunderstand the current point cloud scene as a scene
without the parked car (for vehicle hiding attack) or with vegeta-
tion (for road surface changing attack) in front of the victim AV.
We believe that by changing the network’s understanding of the
scenes, we could change the segmentation results of the model. To
achieve the goal, we introduce some specific point cloud examples
(called reference point clouds) to guide the segmentation model’s
understanding of the whole scene.

The reference point clouds describe the scenes that the attacker
desired. For vehicle hiding attack, reference point clouds do not
contain points that are labeled as “Vehicle” (i.e., there is no car
parked on the road in these examples). For road surface changing
attack, reference point clouds contain lots of “Vegetation” points in
front of the LiDAR sensor. This kind of point cloud examples can
be easily collected by the attacker or obtained from public datasets.
In point cloud segmentation models, each point’s segmentation
result is determined by the local (lower level) and global (higher
level) features of the point cloud [52, 53, 69, 74]. The global features
capture the large-scale geometric structures of the point cloud
and the local features capture the small-scale structures. Ideally,
if we could make the local and global features of the adversarial
point cloud become the same as that of the reference point cloud,
the network’s segmentation result of the adversarial point cloud
would be the same as that of the reference point cloud, which could
obviously achieve the attack goal. However, precisely manipulating

all those features together through adversarial attack is difficult
because of the large-scale input point cloud. Instead, we only focus
on manipulating the global (higher level) features. We introduce a
semantic feature extractor to extract the global features of the input
point cloud. The extracted global features represent the network’s
semantic understanding of the point cloud scene and determines
the segmentation result of each point in the point cloud. By making
the adversarial point cloud𝑋 ′’s global features as close to the global
features of the reference point clouds as possible, the segmentation
result of the adversarial point cloud is guided to be similar to that of
the reference point cloud. In other words, the segmentation network
is misled to perceive the adversarial point cloud as the reference
point cloud (the scene we desired to achieve the attack goal).

Here we introduce a semantic loss 𝐿𝑠𝑒𝑚 to measure the similarity
between the extracted features for the two kinds of point clouds.
We denote the reference point clouds as 𝑃 = {𝑋𝑚}𝑀

𝑚=1, where
𝑋𝑚 is the𝑚-th reference point cloud example. Then we have the
following semantic loss:

𝐿𝑠𝑒𝑚 = min
𝑚∈𝑃

| |𝐹 (𝑋 ′) − 𝐹 (𝑋𝑚) | |2, (3)

where 𝐹 (·) is the semantic feature extractor. Minimizing the se-
mantic loss means making the current scene’s semantics close to
the semantics of the reference point clouds, and this can guide the
finding of the optimal locations for adversarial point clusters with
strong generalization ability.

6.3 Occlusion of Adversarial Points
Based on the segmentation loss and semantic loss, we can gener-
ate some adversarial point clusters that minimize the two losses.
However, the locations for these adversarial point clusters may
be blocked by other objects in physical world and the deployed
adversarial objects cannot be observed by the LiDAR. To address
this problem, we propose an occlusion loss 𝐿𝑜𝑐𝑐 to make sure the
added objects are not blocked by any other objects. As shown in
Figure 6, we draw a frustum from the origin (LiDAR) to include an
adversarial cluster. If the adversarial objects are blocked by other
points, the points belonging to these objects would be further away
from the origin than other points in the frustum. Thus, for each
adversarial cluster 𝑥𝑎

𝑘
, we can define a loss 𝐿𝑘𝑜𝑐𝑐 :

𝐿𝑘𝑜𝑐𝑐 = 𝜖 ·max((max(𝐷𝑜𝑏 𝑗 ) −min(𝐷𝑜𝑡ℎ𝑒𝑟 )), 0), (4)

where max(𝐷𝑜𝑏 𝑗 ) is the maximum distance between the adversarial
points in the frustum and the origin, and min(𝐷𝑜𝑡ℎ𝑒𝑟 ) is the mini-
mum distance between other points in the frustum and the origin.
𝜖 is a pre-defined parameter (in this paper, we set 𝜖 as 10,000). If
the adversarial point cluster is blocked by other points, the value of
𝐿𝑘𝑜𝑐𝑐 is very large, otherwise it is zero. The final occlusion loss is the
sum of occlusion losses of all the point clusters: 𝐿𝑜𝑐𝑐 =

∑𝐾
𝑘=1 𝐿

𝑘
𝑜𝑐𝑐 .

6.4 White-box Attack
In this paper, we consider both white-box and black-box attacks. For
white-box attack, the attackers have full knowledge of the target
semantic segmentation model and the LiDAR based perception
system of the victim AV. Here there is no need to train a separate
semantic feature extractor for the semantic misleading method.
We use a certain feature layer of the segmentation model as the
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Figure 6: The adversarial point cluster is blocked by other
points

feature extractor, because the feature layer of this model contains
the learned global features of the input point cloud scenes and it
can well represent the network’s understanding of the point cloud
scenes.

In addition, the derived locations of the adversarial point clusters
should be reasonable. These locations should not be too high above
the ground or underground so that the attacker can easily deploy
the adversarial objects in physical world. To achieve the goal, we
constrain each point cluster to a bounding box. Then, we can derive
the locations of adversarial point clusters by solving the following
optimization problem:

min
{𝑂𝑎
𝑘
}𝐾
𝑘=1

𝐿∗ = 𝐿𝑡 + 𝜂𝐿′𝑡

s.t. {𝑥𝑎
𝑘1}

𝐾
𝑘=1 ∈ [𝐴𝑚𝑖𝑛, 𝐴𝑚𝑎𝑥 ],

{𝑥𝑎
𝑘2}

𝐾
𝑘=1 ∈ [𝐵𝑚𝑖𝑛, 𝐵𝑚𝑎𝑥 ],

{𝑥𝑎
𝑘3}

𝐾
𝑘=1 ∈ [𝐶𝑚𝑖𝑛,𝐶𝑚𝑎𝑥 ],

(5)

where 𝐿𝑡 = 𝐿𝑠𝑒𝑔 + 𝛼𝐿𝑠𝑒𝑚 + 𝛽𝐿𝑜𝑐𝑐 , and 𝐿′𝑡 is the gradient of 𝐿𝑡 .
𝜂 is a pre-defined hyperparameter. [𝐴𝑚𝑖𝑛, 𝐴𝑚𝑎𝑥 ], [𝐵𝑚𝑖𝑛, 𝐵𝑚𝑎𝑥 ]
and [𝐶𝑚𝑖𝑛,𝐶𝑚𝑎𝑥 ] are the bounds for point clusters’ locations. As
described before, we optimize the total loss as well as the gradients
of total loss for all the original point clouds to generate robust
optimal results.

To solve the optimization problem in Eq. (5), we use tanh(·)
to constrain the relative locations of adversarial point clusters.
Specifically, the location (𝑥𝑎

𝑘1, 𝑥
𝑎
𝑘2, 𝑥

𝑎
𝑘3) for each point cluster 𝑥𝑎

𝑘
can be represented as follows:

𝑥𝑎
𝑘1 = (𝐴𝑚𝑎𝑥 −𝐴𝑚𝑖𝑛)/2 · tanh(𝑝𝑘1) + (𝐴𝑚𝑎𝑥 +𝐴𝑚𝑖𝑛)/2,
𝑥𝑎
𝑘2 = (𝐵𝑚𝑎𝑥 − 𝐵𝑚𝑖𝑛)/2 · tanh(𝑝𝑘2) + (𝐵𝑚𝑎𝑥 + 𝐵𝑚𝑖𝑛)/2,
𝑥𝑎
𝑘3 = (𝐶𝑚𝑎𝑥 −𝐶𝑚𝑖𝑛)/2 · tanh(𝑝𝑘3) + (𝐶𝑚𝑎𝑥 +𝐶𝑚𝑖𝑛)/2.

(6)

Herewe useAdamOptimizer to find the optimized value of (𝑝𝑘1, 𝑝𝑘2, 𝑝𝑘3).

6.5 Black-box Attack
For the black-box attack, the attacker does not have access to the
technical details of the point cloud segmentation model and the
perception system adopted by the victim AV. But he could obtain
the same type of AV and get the output of the segmentation model.

Since the segmentation model is black-box, we cannot use a
certain layer of this model as the semantic feature extractor used in
semantic misleading method. Here we use the point cloud saliency
map [80] to extract the semantic features. Specifically, we generate
the point cloud saliency map for each point cloud using the method
in [80] and select top 100 points with high saliency scores. Since the
global feature of point cloud is dominated by critical points [52, 80],

we can use the 𝑥𝑦𝑧-coordinates of the selected 100 points as the
semantic features. A challenge to generate the point cloud salience
map is that it requires gradients of the network’s loss function with
respect to points’ locations, which are not available in the black-box
setting. To address this challenge, we calculate the approximation
of gradients by shifting the points in a small distance and calculate
the changes of loss.

In addition, instead of using Eq.(3), we adopt Hausdorff Distance
to calculate the semantic loss because of its good performance in
measuring the similarity of two point clouds. Specifically, we define
the semantic loss as:

𝐿𝑠𝑒𝑚 = min
𝑚∈𝑃

max
𝑎∈𝑋 ′

𝑐

min
𝑏∈𝑋𝑚𝑐

𝑑 (𝑎, 𝑏), (7)

where 𝑋 ′
𝑐 is the set of critical points of adversarial point cloud

𝑋 ∗ ∪ 𝑋𝑎 , 𝑋𝑚𝑐 is the set of critical points of the 𝑚-th example in
reference point clouds, 𝑑 (𝑎, 𝑏) is the Euclidean distance between
points 𝑎 and 𝑏. Then the locations for the adversarial objects are
derived by solving the optimization problem with the objective of
minimizing the loss 𝐿∗ = 𝐿𝑡 +𝜂𝐿′𝑡 , where 𝐿𝑡 = 𝐿𝑠𝑒𝑔 +𝛼𝐿𝑠𝑒𝑚 + 𝛽𝐿𝑜𝑐𝑐 .
Also, we calculate the approximation of gradients 𝐿′𝑡 by making
small perturbations on the inputs and calculating the changes of
total loss.

Since we do not have the network’s parameters, we cannot use
gradient-based optimizer to solve the optimization problem. Here
we use an evolution-based algorithm to solve this problem. Specifi-
cally, we use Differential evolution (DE) algorithm [60, 61] to opti-
mize the loss function instead of Adam optimizer.

7 EXPERIMENTS
7.1 Experimental Setting
7.1.1 Platform and Dataset. To train the point cloud segmenta-
tion model, we use both public point cloud dataset and our own
data collected using an automotive LiDAR sensor. Specifically, we
choose the SemanticKITTI dataset [5], which is a public dataset
for sequential point clouds generated with a commonly used au-
tomotive LiDAR. We use the Sequences 00-09 as the training data.
In addition, we collect our own point cloud data using an Ouster
OS1-64 LiDAR. This LiDAR is mounted on the top of the vehicle,
as shown in Figure 7. With a precision of 1.5-5 cm, the sensing
range of the adopted LiDAR is about 120m and its vertical field of
view is 45 degree. We used a tripod with suction cups to mount
and level the LiDAR on top of a sedan vehicle. The height of Li-
DAR from ground surface is adjusted to be 1.8m. We collect data
in three different parking lots and on two different campus roads.
We manually labelled the collected data using the tools provided
by SemanticKITTI.

7.1.2 SegmentationModels. Weuse five state-of-the-art point cloud
segmentation models to evaluate our attack framework, including
PointNet [52], SqueezeSeg [69], Cylinder3D [82], PointNet++ [53],
and PointASNL [74].

PointNet has been widely used in LiDAR-based perception sys-
tems such as PointPillars[34] integrated in Autoware [1]. Squeeze-
Seg projects the point clouds into an image using a spherical pro-
jection and use CNNs to learn the features. Cylinder3D utilizes
3D cylinder partition and 3D cylinder convolution to learn the
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Figure 7: The Ouster OS1-64 LiDAR mounted on a vehicle.
features. It achieves top-2 performance in the leaderboard of Se-
manticKITTI dataset. PointNet++ applies PointNet in a hierarchical
structure, which captures both local features as well as global fea-
tures. PointASNL introduces adaptive sampling (AS) module to
benefit the feature learning of point clouds. For PointNet and Point-
Net++, we follow the preprocessing steps that are widely adopted:
we relabel the points into 7 classes, including Ground, Vehicles,
Bicycles/motorcycles, Pedestrians, Vegetation, Buildings, and Oth-
ers; we divide the whole point cloud scene as 15×15m blocks and
train/apply PointNet on each block. The segmentation results of
the whole scene are aggregated from all the blocks. For Squeeze-
Seg, Cylinder3D and PointASNL, we follows the official steps to
preprocess the LiDAR data.

7.2 Overall Performances
7.2.1 Evaluation on SemanticKITTI Dataset. To validate the effec-
tiveness of our proposed attack, we perform black-box attacks on
the SemanticKITTI dataset. Specifically, we randomly choose 20
examples (or scenes) for each attack scenario from Sequences 10 in
SemanticKITTI dataset and each example contains 5 consecutive
point cloud frames. We use random point clusters to represent the
adversarial objects. The number of adversarial point clusters for
each example is predefined as 5. The adversarial point clusters are
constrain within a 45m*45m block with the height of 2m in front of
the LiDAR. To make the adversarial object feasible and reasonable,
the maximum size of each cluster is limited to 30cm. To find the ad-
versarial locations, we set the hyper-parameter 𝛼 to 0.1, 𝛽 to 1, and
𝜂 to 0.1. For white-box attack, the learning rate of Adam Optimizer
is set to 0.1. For black-box attack, the population size of differential
evolution is set to 180. After deriving the locations of these random
adversarial point clusters, we replace each random cluster with
a new random cluster at the same location. This replacement is
repeated for 100 times and the average results are calculated. Here
we use the attack success rate as performance measurement, which
is defined as the percentage of the points that are classified as our
target label in all target points.

Table 1 reports the average success rate for both vehicle hiding
attack and road surface changing attack. In this experiment, we
consider different point cloud segmentation models. The results
in Table 1 show that our proposed attack framework can achieve
good performance for both the two types of attacks. When PointNet
is applied as the segmentation model, our attack framework can
achieve the best performance and the average attack success rate
is 82%. PointASNL is more robust than the others because it can
capture both neighbor and long range dependencies of the sampled
points, which benefits the robust feature learning [74]. However,

(a) Original segmentation result (b) The result after attack

Figure 8: Attacking real traffic scenarios from Se-
manticKITTI dataset. Blue points belong to the “Vehicle”
class, grey points belong to the “Ground” class, and green
points belong to the “Vegetation” class.

the attack success rate for PointASNL is 62%, which can still bring
security threats to the victim AV. The results also show that the
proposed framework can attack models with different architectures.

Table 1: The average attack success rate on SemanticKITTI

Models Vehicle Hiding Road Surface Changing

PointNet 0.82 0.78
SqueezeSeg 0.77 0.66
Cylinder3D 0.72 0.63
PointNet++ 0.69 0.60
PointASNL 0.62 0.58

In Figure 8, we report the attack result for a real traffic scenario
from SemanticKITTI dataset. This scenario contains multiple cars
on the road. The adversarial point clusters are highlighted with
yellow rectangles. Here we use PointNet as the segmentation model.
We can see that the cars are successfully “hidden” by placing three
adversarial point clusters, which demonstrates that the proposed
attack can successfully mislead the point cloud segmentation model
under realistic traffic scenarios.

7.2.2 Real-world Evaluation. The ultimate goal of the attacker is
to perform the adversarial attacks in physical world. Next, we will
evaluate the performance of our attack framework by conducting
real-world experiments. Here we still consider the black-box attack
and use PointNet as the point cloud segmentation model.

Vehicle hiding. As shown in Figures 9a and 9e, we consider
two real-world scenes. For each scene, we parked a black car in the
parking lot. Our goal is to hide this car by performing the attack
based on our proposed framework. To achieve the goal, we first
collect the original point cloud data using the white car shown in
Figure 7. Then we set the number of adversarial point clusters as 3
and derive 3 adversarial locations. For the scene shown in Figure 9e,
we constrain the locations of adversarial objects on the sidewalk.

Figures 9b and 9f show two examples of the original segmen-
tation results for the two scenes before the attack. The distances
between the victim AV and parked car in both examples are 15
meters. We can see the parked cars (blue points) are correctly rec-
ognized by the LiDAR based perception system. In this experiment,
we use cardboard to generate the adversarial point clusters. These
pieces of cardboard are taken as adversarial objects and they are
placed at the derived locations, as shown in Figures 9c and 9g.
The size of each piece of cardboard is limited to 30cm, which is
consistent with the size of the adversarial cluster. Here we use a
poster stand to hold each piece of cardboard. Figures 9d and 9h
show the segmentation results for the two scenes after the attack.
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(a) Original scene (b) Original segmentation result (c) Adding adversarial objects (d) The result after attack

(e) Original scene (f) Original segmentation result (g) Adding adversarial objects (h) The result after attack

(i) Original scene (j) Original segmentation result (k) Adding adversarial objects (l) The result after attack

Figure 9: The visualizations of real-world adversarial examples. Blue points belong to the “Vehicle” class, grey points belong
to the “Ground” class, and green points belong to the “Vegetation” class. The adversarial objects are highlighted with yellow
rectangles.

In these two figures, the generated adversarial point clusters are
highlighted with yellow rectangles. We can see that each piece of
cardboard creates a point cluster at the given location. The black
cars in the two scenes are successfully “hidden” by those point
clusters. These results demonstrate that our proposed attack can be
easily performed in real world. In addition, as shown in Figure 9g,
these adversarial objects can be placed on the roadside which are
less suspicious and easy to implement.

Road surface changing. As shown in Figure 9i, we choose an
empty space in the parking lot to conduct the road surface chang-
ing attack. Here our goal is to change the drivable road surface to
non-drivable surface (grass). Similar to the vehicle hiding attack,
we first collect the original point cloud data using the car shown
in Figure 7. Then we derive the locations of the adversarial ob-
jects offline using the collected data. In this experiment, we still set
the number of adversarial point clusters as 3 and use 3 pieces of
cardboard as the adversarial objects. The locations of adversarial
objects are constrained on the sidewalk in Figure 9i. Then we place
these objects at the derived locations in the parking lot as shown in
Figure 9k. Figure 9j show an example of the original segmentation
results before the attack. We can see the road surface can be cor-
rectly recognized. However, after the attack, the road in front of the
victim AV is wrongly recognized as “Vegetation”, which is shown
in Figure 9l. The results further demonstrate the effectiveness of
our proposed attack framework in physical world.

7.3 Effect of Semantic Misleading
To show the effect of semantic misleading, we compare our attacks
with baselines. We generate adversarial examples without semantic
loss (without semantic misleading) as a baseline method (named
w/o SeMi). And we also generate adversarial clusters at random
locations (named random) and compare the results.

(a) Vehicle hiding (b) Road surface changing

Figure 10: Attack success rate on SemanticKITTI w.r.t the
number of adversarial objects

Fig. 10 shows the attack success rate of vehicle hiding and road
surface changing attack. Adding more adversarial objects results
in higher success rate. Adding 5 adversarial objects is enough to
perform the two types of attacks, which achieves around 80% attack
success rate. Even using only 2 adversarial objects, the vehicle hid-
ing attack can achieve over 50% success rate. The performances of
white-box attack is slightly better than black-box attack. The attack
without semantic misleading performs worse than our methods.
Randomly adding objects has small impact on the segmentation
results. Our semantic misleading method can improve the attack
success rate and help to generate strong adversarial attacks.
7.4 Attack Moving Victim Vehicle
As mentions in Section 5.1, it is essential to mislead consecutive
frames to ensure a successful attack when the victim AV is moving.
In this experiment, we evaluate the performance of our attack
framework on consecutive point cloud frames. Specifically, we
select the same examples as previous experiments for each attack
scenario and each example contains some consecutive frames of
point cloud data. For each example, we consider four cases and the
corresponding numbers of consecutive frames are 5, 10, 20, and 30,
respectively. We then generate the adversarial point clusters for
each case by taking all the consecutive frames in this case as the



SenSys’21, November 15–17, 2021, Coimbra, Portugal Y. Zhu, C. Miao, F. Hajiaghajani, M. Huai, L. Su, and C. Qiao

Table 2: The average attack success rate on SemanticKITTI
w.r.t. number of consecutive frames

Number of frames 5 10 20 30
Vehicle hiding 0.83 0.73 0.63 0.55

Road surface changing 0.78 0.67 0.54 0.36

original point clouds inputs of our proposed framework. Here we
still consider the black-box attack and the number of adversarial
point clusters is predefined as 5. Table 2 shows the average attack
success rate when the segmentation model is PointNet. We can see
our proposed attack framework can still achieve good performance
on consecutive frames for both vehicle hiding attack and road
surfacing changing attack. Even when the number of consecutive
frames is 30, the average attack success rate for vehicle hiding attack
can still be larger than 50%, which enables the attacker to constantly
hide the parked car when the victim AV is approaching the parked
car. From Table 2 we can also observe that the success rate for road
surface changing attack is lower than that for vehicle hiding attack.
This is probably because the number of “Ground” points are much
larger than that of “Vehicle” points in most examples.

To further validate the effectiveness of our proposed framework
on moving victim AV, we next conduct experiments in physical
world. We consider the attack scenario shown in Figure 9a and
place the adversarial objects at the locations shown in Fig 9c. Then
we imitate the victim AV and drive the vehicle with LiDAR (as
shown in Figure 7) from 20 meters away to 5 meters away from the
parked car. In this experiment, we collect 70 LiDAR frames and use
PointNet as the segmentation model.

Figure 11 reports the segmentation results for three of these
frames after the attack. We can see the parked car can be success-
fully “hidden” when the victim AV is approaching the parked car.
The average attack success rate on these 70 frames is 97.7%. Specif-
ically, the parked car is completely “hidden” in 54 out of 70 frames.
In other 16 frames, very few points (5-10 points in each frame) are
still classified as “Vehicle”. We also find that when the distance
between victim AV and the parked car is larger than 10 meters (47
frames are collected), the parked car is completely “hidden” in 44
frames (93.6% of them); when the distance between victim AV and
the parked car is smaller than 10 meters (23 frames are collected),
the parked car is completely “hidden” in 12 frames (52.2% of them).
This shows that our attack have high attack success rate when the
victim AV is far from (larger than 10 meters) the parked car.

7.5 Robustness and Generalization Analysis
7.5.1 Robustness to Different Driving Directions. It is usually diffi-
cult for the attacker to predict the driving direction of the victim
AV. Thus, the generated adversarial example should be robust to
different driving directions. In this experiment, we consider the
attack scenario shown in Figure 9a and place the adversarial objects
at the locations shown in Fig 9c. Then we drive the vehicle with
LiDAR approaching the parked car from different directions (e.g.,
left and right). Here we still drive from 20 meters away to 5 meters
away from the parked car and collect 210 LiDAR frames in total.
Figure 12 shows the experimental results. We can see the parked
car can be successfully “hidden” no matter which direction the
victim AV comes from. The attack success rate on these 210 frames

(a) (b) (c)

Figure 11: Bird-eye-view of the segmentation results (after
the attack) when the victim AV approaches the parked car.

(a) (b) (c)

Figure 12: Bird-eye-view of the segmentation results (after
the attack) when the victim AV comes from different direc-
tions. (a) LiDAR on the left side. (b) LiDAR in the middle. (c)
LiDAR on the right side.

Table 3: The average attack success rate on SemanticKITTI
w.r.t. location error

Error(m) 0.00 0.05 0.10 0.15 0.20 0.30

Vehicle hiding 0.83 0.79 0.77 0.74 0.69 0.61
Road surface changing 0.78 0.73 0.68 0.66 0.58 0.50

is 96.0%. Specifically, when the distance between victim AV and
parked car is larger than 10 meters (143 frames are collected), the
parked car is completely “hidden” in 133 frames (93.0% of them).
These results are similar to previous experiments where victim AV
drives right behind the parked car, and they demonstrate that our
attacks are robust to different driving directions.

7.5.2 Location Errors of Adversarial Objects. In practice, it is usually
difficult to exactly place the adversarial objects at the derived loca-
tions. To evaluate the robustness of our proposed attack framework
to location errors, we choose the same examples as previous experi-
ments for each attack scenario from the SemanticKITTI dataset and
generate corresponding adversarial point clusters for each example.
Then we shift each adversarial point cluster within a given distance
towards a random direction. Table 3 reports the average attack suc-
cess rate over the these examples after shifting the clusters. Here
we vary the given distance from 0m to 0.3m for each type of attack.
We can see the the proposed attack framework can still achieve
good performance in all cases. Even when the distance is 0.3m, the
attack success rate can still be larger than 50%.

We also evaluate the robustness of our attack framework to loca-
tion errors in physical world. Specifically, we consider the scenario
in Figure 9a and shift each adversarial object in Figure 9c within
0.3m towards a random direction. We drive the vehicle from 20
meters away to 5 meters away from the parked car and collect 69
LiDAR frames in total. The new locations of the adversarial objects
are shown in Figure 13a and the segmentation result after attack
is shown in Figure 13b. The result shows that the parked car can
still be “hidden” although we randomly shift the adversarial ob-
jects. In the 69 collected frames, the average attack success rate is
96.0%. When the distance between the victim AV and parked car is
larger than 10 meters (46 frames are collected), the parked car is
completely “hidden” in 41 frames (89.1% of them). The results are
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(a) (b)

Figure 13: The visualizations of a real-world adversarial ex-
ample after shifting the adversarial objects. (a) The new lo-
cations of adversarial objects after shifting. (b) The segmen-
tation result after shifting.

(a) (b)

Figure 14: The visualizations of a real-world adversarial ex-
ample with different shapes of objects. (a) The traffic signs
and billboards as new adversarial objects. (b) The segmenta-
tion result with those objects.

similar to that in Figure 11. The results also show that the generated
adversarial examples can tolerate small location errors (less than
0.3m) of the adversarial objects, which further demonstrates the
practicability and robustness of our attack framework.

7.5.3 Vehicle Hiding Attack with Different Shapes of Objects. As
mentioned in Section 4, the adversarial object could be in any shape
as long as it can reflect laser. In this experiment, we evaluate the
performance of our proposed attack scheme with some road traf-
fic signs and billboards instead of the cardboard. Specifically, we
consider the attack scenario in Figure 9c. We replace the cardboard
with two traffic signs and a billboard and keep them at the same
locations as shown in Figure 14a. Then we drive the vehicle from 20
meters away to 5 meters away from the parked car and collect 65
LiDAR frames in total. Figure 14b shows the segmentation results
with new adversarial objects. As we can see, these adversarial ob-
jects successfully create some point clusters with different shapes
at given locations, and make the parked car “invisible" to the victim
AV. The attack success rate for all of the 65 frames is 95.8%. When
the distance between the victim AV and parked car is larger than
10 meters (44 frames are collected), the parked car is completely
“hidden” in 43 frames (97.7% of them). The result shows that the
attacker could use objects in arbitrary shapes to launch the attack,
such as common road traffic signs and billboards.

7.5.4 The Effect of the Victim Vehicle’s Speed. Next, we evaluate
the effect of the victim vehicle’s speed on the attack performance.
Specifically, we let the victim vehicle drive at different speeds (5mph,
10mph, 15mph, 20mph, and 25mph). Table 4 shows the average
attack success rates of the two types of attacks. We can see that the
speed has little impact on the attack success rate. Even when the
victim vehicle is at high speed (25mph), the attack success rate can
be around 99%.

7.5.5 The Effect of Passing-by Vehicles. In this experiment, we
study the effect of passing-by vehicles on the performance of our
attack framework. Here we still consider the scenario shown in

Table 4: Average attack success rate under different speeds.

Speed (mph) 5 10 15 20 25

Vehicle hiding 0.97 0.97 0.96 0.97 0.99
Road surface changing 0.71 0.72 0.71 0.72 0.72

(a) (b)

Figure 15: The visualization of a real-world adversarial ex-
ample with a passing-by vehicle. (a) Another Car Passing by
The Vehicle. (b) The segmentation Result after Attack.
Figure 9c. To simulate a passing-by event, we drive another vehicle
(white car) beside the parked car while keeping the parked car and
the adversarial objects at same locations as before, which is shown
in Figure 15a. The victim vehicle also drives from 20 meters away
to 5 meters away from the parked car and collect 76 LiDAR frames.
The segmentation results in Figure 15b show that the target vehicle
(parked black car) is successfully “hidden” by the adversarial objects.
In the collected 76 frames, the attack success rate frames is 72.3%.

8 ATTACK AGAINST OBJECT DETECTION
MODELS

To further demonstrate the effectiveness of our proposed attack, we
attack various LiDAR object detection systems. A common pipeline
of many state-of-the-art object detection systems is: the system first
performs semantic segmentation to find foreground points (such
as vehicles and pedestrians) from background points; then a post-
processing step is performed to generate bounding box proposals
based on the found foreground points; finally, the bounding box is
used for further applications such as object tracking and motion
planning. For example, in the LiDAR perception pipeline of Baidu
Apollo 3.0, a CNN semantic segmentation is adopted to segment
obstacle points, which is shown in Figure 16.

Figure 16: LiDAR perception pipeline in Baidu Apollo 3.0.

Our proposed attack framework can fool the foreground seg-
mentation step and may result in wrong object detection result, i.e.,
hiding a vehicle from detection model. By hiding the foreground
points, the victim AV can not generate bounding box proposals cor-
rectly. In this experiment, we conduct vehicle hiding attacks against
two state-of-the-art object detectionmodels: Frustum-PointNet [51]
and Baidu Apollo [2].

Frustum-PointNet. This model first extracts 3D bounding frus-
tum of an object based on 2D image detection results. Then it applies
3D semantic segmentation in each frustum to segment foreground
points from the background using a PointNet-like network, and the
detection result is generated from the foreground points.

Baidu Apollo. Figure 16 shows the obstacle perception pipeline
used in Baidu Apollo. In the preprocessing step, points are pro-
jected to the X-Y plane and divide into grids. In CNN semantic
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(a) (b)

Figure 17: Visualization of Adversarial Examples for Baidu
Apollo object detection models. (a) Adding adversarial ob-
jects. (b) The detection result after attack.

segmentation step, 8 features are extracted from each grid and fed
into the fully-convolutional neural network to segment and cluster
the foreground points. The foreground point clusters that contain
few points or have low confidence are removed. Finally, the Post-
processing module is used to refine the candidate clusters and a
Minbox builder is used to estimate the object bounding box.

In this experiment, we aim to conduct black-box attack against
the object detection results (i.e., hide the parked car from detection
model) by attacking the foreground segmentation sub-modules.
Since we cannot obtain the segmentation results directly in black-
box attack, we infer the segmentation results from the object de-
tection results. Specifically, we assume all the points inside the
generated bounding boxes are segmented as “foreground”, and
other points outside the bounding boxes are segmented as “back-
ground”. The goal of our attack is to make all the foreground points
in front-near of victim AV misclassified as background points. Here
we train the models using the KITTI dataset [21]. The number of
adversarial objects is set to 5. We measure the performance of our
attack framework using attack success rate, which is defined as the
percentage of the vehicles that are not detected after the attack.

Figure 17 shows the visualizations of our attack against Baidu
Apollo LiDAR perception model. Before the attack, the vehicle
points are correctly predicted in the segmentation module and a
bounding box is correctly generated. After adding the adversarial
objects that are highlighted with yellow rectangles in Figure 17a,
the vehicle points are labelled as “background” in the foreground
segmentation step. As a result, the parked car is not detected by
the model, which can be seen from Figures 17b.

In this experiment, we also evaluate the performance of our
attack framework on the KITTI dataset. Specifically, we select 10
scenes from the dataset and generate the locations of adversarial
clusters. Table 5 shows the attack success rate on different detection
models. We can see our attack framework has the best performance
on Frustum-PointNet and the attack success rate is 87%.

9 DISCUSSION
9.1 How to Perform the Attack in Practice
In practice, the adversarial locations can be derived offline. The
attacker can obtain a similar LiDAR that is adopted by the victim
AV and imitate its driving behaviors to collect the original point
cloud. Then the adversarial locations are derived using the proposed
method. With the derived locations, the attacker can launch the
attack by placing arbitrary objects that can reflect laser such as
road signs around these locations. Since the locations are generated
in an offline manner, the attacker can easily and quickly launch the
attack when the victim AV is approaching.

Table 5: The average attack success rate of object detection

Models Attack success rate

Frustum-PointNet 0.87
Baidu Apollo 0.77

9.2 Defense Strategies
The authors in [62] propose a defense strategy that can mitigate
the LiDAR spoofing attack described in [9]. However, this strategy
can not be directly applied to our attack. On one hand, the defense
in [62] is used to identify the injected unreal fake points, but our
injected points are generated by real physical objects, which can not
be detected by their defense. On the other hand, the defense strategy
in [62] can be attacked by our method because they use LiDAR
semantic segmentation to assist object detection. In this section,
we discuss two types of potential defense strategies to mitigate the
proposed attacks: sensor fusion and output aggregation.

Sensor fusion. The most straightforward defend approach is to
utilize other types of sensors such as camera and radar. However,
such defense strategy requires additional sensors and increases the
cost of autonomous vehicle systems. Besides, existing studies have
found that camera perception system and radar are also vulnerable
to adversarial attacks [29, 54, 73]. The attacker could attack all the
sensors to achieve the attack goal [8, 65].

Output aggregation.Another potential defense strategy is based
on aggregation approach. Recent studies have found that 3D adver-
sarial examples usually have poor transferability between different
models [70]. Based on this finding, a potential defense method is to
train multiple point cloud segmentation models with different data
augmentation and different variable initialization. Each model pro-
vides a segmentation result of the input point cloud frame. The final
segmentation result is aggregated from the outputs of all models
through majority voting. Even there is a model fooled by the attack
successfully, the other models could still provide correct results
because of the low transferability of adversarial examples.

10 CONCLUSIONS
In this paper, we explore how to perform practical and effective
adversarial attacks against LiDAR semantic segmentation in au-
tonomous driving. We first analyze the attack challenges in physical
world and then propose a novel attack framework based on which
the attacker can easily fool the semantic segmentation models by
adding arbitrary objects to the driving environment. In this frame-
work, we consider both white-box and black-box attacks. We con-
duct extensive real-world experiments to evaluate the performance
of the proposed attack framework. The experimental results demon-
strated that our proposed attacks are not only effective but also
robust. Our attack framework can achieve more than 90% success
rate in real-world driving environments.
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