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ABSTRACT

Due to the great advantage of LiDAR sensors in perceiving com-
plex driving environments, LIDAR-based 3D object detection has
recently drawn significant attention in autonomous driving. Al-
though many advanced LiDAR object detection models have been
developed, their designs are mainly based on deep learning ap-
proaches, which are usually data-hungry and expensive to train.
Thus, it is common for some LiDAR perception system developers
or self-driving car companies to collect training data from different
sources (e.g., self-driving car users) or outsource the training work
to a third party. However, these practices provide opportunities for
backdoor attacks, where the attacker aims to inject a hidden trigger
pattern into the victim detection model by poisoning its training set
and let the model fail to detect objects when the trigger presents in
the inference phase. Although backdoor attacks have posed serious
security concerns, the vulnerability of LIDAR object detection to
such attacks has not yet been studied. To fill the research gap, in
this paper, we present the first study on backdoor attacks against
LiDAR object detection in autonomous driving. Specifically, we
propose a novel backdoor attack strategy based on which the at-
tacker can achieve the attack goal by poisoning a small number of
point cloud samples. In addition, the proposed attack strategy is
physically realizable, and it allows the attacker to easily perform
the attack using some common objects as the triggers. To make the
poisoned samples difficult to be detected, we also design a stealthy
attack strategy by creating some fake vehicle point clusters to hide
the injected points in the point cloud. The desirable performance of
our attacks is demonstrated through both simulation and real-world
case study.
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1 INTRODUCTION

As an important perception technology, LIDAR (light detection and
ranging) has been widely used by autonomous vehicles (AVs) to
obtain rich and accurate information from surrounding driving en-
vironments. LIDAR sensor is particularly attractive in autonomous
driving mainly because it cannot only collect dense, geo-referenced,
and accurate 3D point cloud data but also be robust to various light
conditions and can work under day and night [53].

For LiDAR perception systems in autonomous driving, a critical
task is 3D object detection, which aims to detect the objects (e.g., cars,
bicycles, and pedestrians) on the road, and it serves as one of the
most important prerequisites to autonomous navigation [29]. In re-
cent years, the rapid development of deep neural networks (DNNs)
has enabled LiDAR object detection models to achieve outstanding
performance in detecting various objects on the road. Despite the
distinct advantage of DNNs, there are still many challenges that
prevent the wide deployment of the DNN-based LiDAR object de-
tection models in practice. One of the major challenges is that deep
learning approaches are notoriously data-hungry, and they need
access to large and diverse datasets to train, improve their accuracy
and eliminate bias. However, in practice, it is usually difficult to
collect mass point cloud data that cover various driving environ-
ments, because the data collection not only relies on expensive
LiDAR sensors but also takes a lot of time and effort. Another major
challenge is that DNN-based LiDAR object detection models are
usually expensive to train, and the training process requires large
amounts of computational resources and time.

To facilitate the preparation of the point cloud data used for
training, many LiDAR perception system developers or self-driving
car companies use public point cloud datasets (e.g., KITTI [14]
and nuScenes [3]) or collect point cloud data from self-driving car
users. In addition, to address the challenge of expensive training
and save cost, it is common for individual developers or companies
to outsource their training work to a machine-learning-as-a-service
(MLaaS) provider, such as Microsoft Azure Machine Learning [1, 35]
and Google Vertex AI [37, 41]. Although these practices can facili-
tate the wide deployment of DNN-based LiDAR object detection
models, they also pose serious security concerns. The malicious
parties who are involved in the above processes may launch attacks
to degrade the performance of the adopted object detection models.
For example, some point cloud data providers (e.g., the parties who
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release the public datasets or self-driving car users) may provide
poisoned data, based on which the derived object detection models
cannot achieve good performance. The adversarial employees of
MLaaS providers may also poison the dataset used for training and
further degrade the performance of the derived detection models. In
this paper, we consider an important form of attacks called backdoor
attack, where an attacker aims to inject a hidden trigger pattern
into a DNN model through poisoning its training set, so that the
prediction of the attacked model (also called backdoored model)
can be changed when the trigger presents in the inference phase.
The backdoored model can behave normally on clean data samples
that do not contain the trigger pattern. Thus, it is usually difficult
to be aware of such attacks in practice, and they may cause more
damages than other threats such as adversarial examples [27].

Backdoor attacks have drawn much attention in recent years due
to their high attack success rates and stealthiness. A large number
of backdoor attack methods have been proposed in various domains
such as image and video classification [12, 64], speech recognition
[25, 61, 63], natural language processing [6, 8, 59], and malware
detection [40, 42, 58]. However, there have been no studies so far on
the vulnerability of LiDAR object detection models to such attacks.
Although there are a few existing works that explore backdoor
attacks in 3D point cloud [2, 31, 52, 54], they mainly focus on
the point cloud classification of a single object, which is different
from the object detection task that aims to detect the instances of
visual objects and report their information such as their locations,
orientations, and sizes. In addition, these works only study backdoor
attacks in the digital world, and it is not clear whether the proposed
attack methods can achieve good performance in the physical world.

To perform physically realizable backdoor attacks against LIDAR
object detection in autonomous driving, we need to consider several
challenges. First, compared with the models of 2D deep learning or
3D point cloud classification, LIDAR object detection models may
have completely different structures, and their outputs (e.g., the
object’s location, orientation, and size) are more complex than that
of classification models. Both the two aspects can result in a plethora
of unique properties that add to the complexity of the backdoor
attacks against LIDAR object detection. Second, the LiDAR point
cloud data in autonomous driving are intrinsically different from
that of 2D images and much more complex than the point cloud of
a single object. It is not easy to design and implant 3D backdoor
triggers that are not only physically realizable but also learnable by
object detection models. In addition, the designed triggers should be
robust to various factors such as their location errors and different
driving environments so that the attacks can be easily performed
in the physical world. Furthermore, it is necessary to keep the
poisoned data (with triggers) stealthy so that they cannot be easily
detected in the training phase.

In this paper, we study how to address the above challenges and
investigate the possibility of performing backdoor attacks against
LiDAR object detection in autonomous driving. Specifically, we
propose a novel backdoor attack strategy, based on which the at-
tacker can derive an optimal location in the point cloud for injecting
the backdoor trigger and poisoning the training set. The proposed
attack strategy allows the attacker to poison only a small number
of point cloud samples, and these samples can effectively enable the
victim detection model to learn and remember the specific trigger
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pattern and fail to detect the vehicles associated with this trigger
in the inference phase. In addition, we consider various factors
that may affect the physical realizability of the proposed attack
and take measures to address them in our design. So it is easy for
the attacker to perform the attack in the physical world. Further-
more, to make the poisoned samples difficult to be detected, we
also design a stealthy attack strategy in which some fake vehicle
point clusters are used as trigger carriers and added to the training
samples of the victim model. These fake vehicle point clusters do
not look like the point clusters generated by real vehicles, but their
feature representations are similar to that of real vehicles. Thus, it
is not easy to detect them in the training phase, which can make
the attack stealthier.

To evaluate the performance of the proposed attack strategies,
we conduct extensive experiments in both the digital world and the
physical world. We first demonstrate their effectiveness on a public
LiDAR point cloud dataset, and the experimental results show that
the attack success rate can be more than 90% while the detection
accuracy of the backdoored model on clean data only declines less
than 10%. We then evaluate our attacks using a real-world LiDAR
object detection testbed, and the results show that our attacks can
still achieve high attack success rate in the physical world. To the
best of our knowledge, we are the first to study backdoor attacks
against LiDAR object detection in autonomous driving.

In the remaining parts of this paper, we first introduce the back-
ground in Section 2 and describe the problem setting in Section 3.
Then, we present the proposed attack strategies in Section 4. The
experimental results in the digital world and the physical world
are reported in Section 5 and Section 6, respectively. In Section 7,
we analyze the influence of the backdoor trigger. Potential defense
strategies and limitations are discussed in Section 8. We introduce
related work in Section 9 and conclude the paper in Section 10.

2 BACKGROUND

2.1 LiDAR Object Detection in Autonomous
Driving

LiDAR has been widely adopted in autonomous driving to detect
objects (e.g., cars and pedestrians) on roads. The output of a Li-
DAR sensor is a set of points, which is referred as a point cloud.
Each point is usually represented by a vector that contains its 3D
coordinates and the laser reflection intensity. Based on the col-
lected point cloud data, LIDAR object detection systems can output
a three-dimensional bounding box for each detected object. This
bounding box defines the location, size, and orientation of an object
in 3D space. In addition, the 3D bounding box usually has proper
dimensions and orientation so that it can bound tightly to an ob-
ject. The state-of-the-art LIDAR object detection systems mainly
rely on DNNSs to achieve good performance. Existing DNN-based
LiDAR object detection models can be roughly divided into three
categories: projection-based object detection, voxel-based object
detection, and point-based object detection. The projection-based
LiDAR object detection models [33, 34, 56] first transform point
clouds into the 2D structures and then utilize convolutional neural
networks (CNNs) to perform the detection. The voxel-based detec-
tion models [10, 18, 26, 30, 32, 43] slice point clouds into fixed size
voxel grids and learn the features using 3D CNNs. The point-based
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models [9, 44, 45, 60] directly operate on point clouds for 3D object
detection instead of transforming point clouds to 2D structures or
voxels for feature extraction.

The common pipeline of existing LIDAR object detection mod-
els usually contain three modules [62]: sensor data representation,
feature extraction, and core object detection. In the sensor data rep-
resentation module, the collected point cloud data are transformed
into structured and compact representations, based on which high-
dimensional and rich features are then extracted in the feature ex-
traction module. Finally, the learned high-dimensional features are
processed by the core object detection module, which can further
output the bounding box information about the detected objects. In
practice, DNN-based LiDAR object detection models usually need to
access a large amount of training data to achieve good performance.
Although LiDAR perception system developers and self-driving
companies can generate the point cloud data using their own sen-
sors or simulation-based approaches, it is common for them to use
public datasets or collect point cloud data from self-driving car
users so that they can avoid the time and effort required to collect
the data. Currently, there are many public point cloud datasets
(e.g., KITTI [14], nuScenes [3], and ApolloScape [20] ) that can be
used to train LiDAR object detection models, and most of these
datasets provide rich ground truth bounding box information that
is necessary for training. For the data collected from self-driving
car users, the bounding box information is usually annotated by
the users.

2.2 Backdoor Attack

In a backdoor attack, the attacker aims to poison the training set
so that he can modify the target model’s behavior on poisoned
samples while maintaining good overall performance on all other
clean samples [7, 13, 36, 39]. Here a backdoor corresponds to a
hidden behavior or functionality of the target model that is only
activated by a secret trigger. In backdoor attacks, the attacker can
control a small set of samples that are used for training the target
model. He can poison these samples by injecting a trigger pattern
into each of them. The shape of the trigger pattern and the exact
way the pattern is associated to the poisoned samples depend on
the specific attack setting. In the poisoning process, the attacker
usually also needs to modify the label information of the poisoned
samples to reflect the target model’s behavior. For example, in many
backdoor attacks against classification tasks, the attacker changes
the labels of the poisoned training samples to the target label so
that the target model can output the target label on all poisoned
samples in the inference phase. The poisoned samples together
with the modified label information are finally merged with the
clean data to generate the poisoned training set.

The model trained based on the above poisoned training set is
usually called backdoored model, which can learn correct behaviors
from clean samples and malevolent behaviors from the poisoned
samples. In practice, a backdoor attack should be able to achieve
two goals. The first goal is to guarantee stealthiness at test time,
which means the backdoored model and the benign model (trained
on clean samples) should have similar performance on clean testing
dataset. The second one is to achieve high attack success rate on
poisoned samples.
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3 PROBLEM SETTING
3.1 Threat Model

In this paper, we consider a scenario where LiDAR perception sys-
tem developers or self-driving car companies train object detection
models by themselves, but they need to collect some training data
from various sources (e.g., public datasets or self-driving car users).
Among the data providers, there is an attacker who aims to inter-
fere the model training process and inject a backdoor (i.e., a hidden
trigger pattern) into the trained detection model by providing some
modified point cloud data. The final goal of the attacker is to let the
victim AV equipped with the backdoored model fail to detect the
objects (e.g., cars or pedestrians) on the road when the backdoor
trigger presents in the driving environment, but it should be able
to provide legitimate detection results when the backdoor trigger
does not present.

Without loss of generality, in this paper we mainly focus on
hiding a target vehicle from the LiDAR object detection system by
performing backdoor attacks. Specifically, we assume that there
is a car in front of the victim AV. The attacker wants to hide the
front car from the LiDAR perception system of the coming victim
AV by injecting a trigger into the driving environment. This kind
of attack can result in rear-end collisions and cause catastrophic
consequences. In practice, there are many types of motivation for
the attacker to launch this kind of attack, such as causing traffic
accidents for insurance frauds and unfair competition between au-
tonomous driving companies. In addition, we consider a practical
and challenging setting where the attacker has no access to the
training process of the victim model and the clean training data (i.e.,
the data without modifications) collected from other benign sources.
But the attacker can collect his own LiDAR point cloud data or gen-
erate the data by using some simulation-based approaches. Besides,
we assume that the attacker can know the architecture of the victim
model, which is reasonable because some autonomous driving com-
panies launch open-source autonomous driving platforms. It is also
possible for the attacker to get the model architecture information
from an internal employee of an autonomous driving company.
With such information, the attacker can train a surrogate detection
model, based on which some poisoned training samples can be
created and submitted to the training set of the victim detection
model. We also assume that the attacker can slightly change the
driving environment. For example, he can park a car on the road
and place some objects in the driving environment.

3.2 Problem Definition

Suppose S; denotes the set of point cloud samples collected from
benign sources. S, denotes the set of samples owned by the attacker.
Each sample here contains both the point cloud and the bounding
box information of the objects in the point cloud. The bounding
box information is usually annotated by data providers. If there is
no backdoor attack, the LiDAR object detection model Fg(-) trained
based on S¢ U S, is benign, and it has normal behavior on all testing
data. However, for some malicious purposes, the attacker wants
to poison a small subset of point cloud samples S, (Sp C Sg) by
injecting backdoor triggers into them and modifying the bounding
box information of the objects in these samples, so that the trained
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detection model (i.e., the backdoored model) can generate his desir-
able predictions when the trigger presents in the inference phase.
In practice, the attacker can poison the data before uploading them
to the data requester. We use 7 to denote the backdoor trigger and
model the poisoning strategy as a transformation function T(x, 7),
where x € Sp,. The goal of the transformation function is to inject
the backdoor trigger 7 to x and transform x into a poisoned training
sample x” (i.e., x’ = T(x, 1)).

We denote the backdoored detection model as Fy/ (). The prob-
lem here is how to design a poisoning strategy T(x, 7) to create a
small set of poisoned training samples, based on which the back-
doored model Fy/ (-) can provide incorrect detection results for the
poisoned data with the trigger while providing correct detection
results for clean data. In addition, the design of T(x, 7) should guar-
antee that the trigger injection process can be easily implemented
in the physical world.

4 METHODOLOGY

In this section, we first analyze the challenges of launching backdoor
attacks against LiDAR object detection in autonomous driving.
Then, we propose two attack strategies with different stealthiness.

4.1 Attack Challenges

According to the general philosophy of backdoor attacks, the poi-
soning strategy T (x, r) should contain two components. One com-
ponent is used to inject the backdoor trigger 7 into the point cloud,
and the other one aims to modify the bounding box information
of the objects that the attacker wants to hide (i.e., the target vehi-
cles on the road). For backdoor attacks against image classification,
the poisoning strategy can be easily performed. The attacker can
simply add a trigger (e.g., a stamp or a watermark) to the image
by modifying pixel values and change the label of the image to the
target label. However, when it comes to LiDAR object detection, we
need to consider several challenges in order to perform the above
transformation.

First, the LiDAR point cloud is quite different from the image
data, and it is consist of massive points that are generated by the
objects in the physical world. If we want to modify these points
(e.g., perturbing or deleting points), we need to change the physi-
cal properties (e.g., shape) of the corresponding objects, which is
usually difficult to realize in practice. Thus, the trigger injection
method like modifying image pixel values cannot be directly used
here to modify the existing points in the point cloud. To address
this challenge, we propose to use an additional point cluster as the
trigger 7 and add it to the existing point cloud. Such a point cluster
can be easily generated in practice by using a common object such
as a cargo carrier bag or a cardboard box. Please note that in this
paper both the chosen common object and its corresponding point
cluster are called “trigger” for convenience.

Second, the underlying principle of LiDAR object detection mod-
els is that they can learn the geometric features of point clouds
from points’ locations, and the predictions made by these models
mainly rely on the learned geometric features [67]. Based on this
fact, the location of the new injected trigger can have large effect
on the model’s performance, because different locations may lead
to different geometric features. Therefore, it is necessary to find an
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optimal location for the trigger in the point cloud so that the trigger
is not only learnable but also able to generate the largest effect on
the geometric features that can be learned by the model. Adding
the trigger to such a location can make the learned detection model
more sensitive to the trigger, and thus the backdoor attack can be
more effective. However, it is a challenging task to find such an
optimal location for the trigger because the point cloud has a very
large 3D searching space.

The third challenge mainly comes from the physical world. In this
paper, we aim to design physically realizable backdoor attacks. After
poisoning the LiDAR object detection model, the attacker should
be able to launch the attack in the physical world by placing the
chosen trigger at the derived location in the driving environment,
and the victim AV equipped with the backdoored model should not
be able to detect the object affected by this trigger. However, in
real-world driving environment, there are many factors that can
affect the functionality of the trigger. For example, the victim AV
is usually moving and may come from different directions when
the attacker launches the attack, which can lead to a difference
between the trigger point cluster captured in real world and that
injected to the training samples. Besides, it is usually difficult for
the attacker to exactly place the trigger at the derived location, and
there will be some location errors for the trigger in physical world.
The designed attack strategy should be robust to these factors.

Furthermore, different from the classification task where each
training sample has a specific label, the LiDAR object detection
task associates each training sample with a set of bounding boxes.
Each bounding box is corresponding to an object (e.g., a vehicle) in
the point cloud. For the classification task, the attacker can directly
change a training sample’s label to the target label when poisoning
this sample. But for the LiDAR object detection task, it is difficult
to deal with the bounding box of the object that the attacker wants
to hide. A bounding box is more complex than a specific label, and
it usually contains much information such as the corresponding
object’s location, size, and orientation. An intuitive way to deal with
the bounding box information when poisoning the samples is to
delete such information as we aim to hide the corresponding object.
However, this way is not stealthy because it is easy to detect the
objects that are not framed by bounding boxes in training samples.

4.2 Backdoor Attack Strategy

Next, we discuss how to design the poisoning strategy that can help
the attacker achieve the attack goal. Figure 1 shows the pipeline
of our proposed poisoning strategy. The attacker first chooses an
object as the trigger in the physical world and generates its cor-
responding point cluster that can be injected into the point cloud.
He also needs to train a surrogate detection model using his clean
point cloud data. Here we assume that the attacker knows the archi-
tecture of the victim detection model. Then, the attacker can derive
the optimal location for the trigger in the point cloud based on his
own data and inject the trigger into a small subset of his point cloud
samples. Finally, the attacker uploads the poisoned samples to the
training set to get the backdoored model.

In the above process, to create realistic trigger point cluster
whose point distribution is similar to that captured in real world,
we use ray-casting method [4] to sample the points of the trigger.
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Figure 1: The proposed poisoning strategy.

Since the victim AV may come from different directions towards
the target vehicle in the real-world driving environment, the angle
between the LiDAR and the trigger is considered when we generate
the trigger point cluster. Thus, the derived backdoored model is
robust to different driving directions of the victim AV.

The key problem in the proposed poisoning strategy is how to
derive the optimal location for the trigger. Recall that the final goal
of the backdoor attack is to let the backdoored model fail to detect
a target vehicle associated with the trigger. The derived optimal
location should enable us to build and strengthen the connection
between the target vehicle and the trigger, which can further give
a wrong guidance to the detection model when a vehicle comes
with the trigger. To create a strong connection between them, an
intuitive method is to bring the trigger closer to the target vehicle.
In our proposed poisoning strategy, we choose the roof of the target
vehicle to place the trigger. The roof of the vehicle is a good choice
not only because it enables the attacker to easily place the trigger
in the driving environment, but also because the trigger on the roof
can be easily captured by the LiDAR without the effect of occlusion.
However, the roof still provides a big area. We need to derive an
optimal location in this area.

As discussed in Section 4.1, the injected trigger should have large
effect on the geometric features that can be learned by the detection
model. Since we mainly focus on hiding the target vehicle, we hope
its features can be changed as much as possible after injecting the
trigger. Suppose the point cloud sample that the attacker wants
to poison is denoted as x. We use v to denote the point cluster
generated by the target vehicle in x. Without loss of generality,
here we assume that x contains only one vehicle (i.e., the target
vehicle) that can be covered by the LiDAR. v’ = T(v, 7) denotes the
point cluster of the target vehicle embedded with trigger 7. The
center locations of the target vehicle and the trigger are denoted as
vc and 7, respectively. To measure the effect of the trigger on the
target vehicle, we first extract the vehicle’s feature representations
learned by the surrogate model. We use fy(-) to denote the feature
extractor and its input is the point cloud sample that contains
the target vehicle. Then, we formulate the following optimization
problem to derive the optimal location of the trigger.

max )" D(fy(x). fy(x —v+0)

¢ xX€E€S; (1)
s.t. d(ze,0c) <6,

where x — v + v’ represents the point cloud copied from x but the

target vehicle v is replaced with v’. fy(x) and fy(x — v + ') are
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the feature representations of v and o', respectively. D(, -) is the
distance function that is used to measure the difference between
the feature representations of the target vehicle before and after
injecting the trigger. In this paper, we use Euclidean distance func-
tion for D(+,-). S; C S is a set of clean point cloud samples chosen
by the attacker to derive the optimal location. By considering var-
ious samples here, we can make the derived the location robust
to uncertainties in the environment because different samples can
cover different driving environments. d(-,-) is used to measure
the distance between the trigger and the target vehicle, and € is
a threshold. The constraint aims to limit the derived location to a
reasonable area (i.e., the roof of the target vehicle). Here we can
also use Euclidean distance function for d(-,-). The basic idea of
this optimization problem is to derive an location of the trigger that
can maximize the difference between the target vehicle’s feature
representations before and after injecting the trigger.

The above optimization problem can be solved by using the
gradient-based methods. However, many state-of-the-art LIDAR
object detection model designs choose to first pre-process the point
cloud data before feeding them into the model to improve the al-
gorithm efficiency [16], and the adopted pre-processing functions
are usually non-differentiable, which makes it difficult to solve the
above optimization problem. For example, some LiDAR object de-
tection models use cell-level aggregated input features such as cell
occupancy and the mean height of the points inside a cell, and the
calculation of such features are non-differentiable [4, 11, 50, 56]. To
address this challenge, we use the soft point-inclusion calculation
method [4] to represent the trigger in the input of the detection
model. The basic idea of this method is to use a differentiable func-
tion to approximate the calculation of the cell-level features. Based
on this differentiable function, we can derive the trigger’s location
using the gradient-based method.

Another challenge in our design is that the solution of the above
optimization problem is highly dependent on the target vehicle’s
feature representations before and after injecting the trigger. Thus,
it is necessary to design an effective feature extractor fy(-) so that
it can accurately extract the feature representations of the target
vehicle with and without the trigger. To address this need, we
design a feature extractor that first identifies the region of the
target vehicle in the point cloud and then maps this region into the
feature space learned by the surrogate detection model, based on
which the target vehicle’s feature representations can be accurately
extracted. Here we consider all feature representations output by
the surrogate model, because each of them may be leveraged by
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the model to predict the result. To simplify the optimization, we
also add a global average layer in our designed feature extractor to
calculate the average feature representations.

After deriving the trigger’s location, the attacker then poisons
the chosen point cloud samples in S;, by injecting the trigger into
them. Since each sample may contain several vehicles, the attacker
can choose some of them as target vehicles and attach the trigger to
these target vehicles. For each target vehicle, the attacker also needs
to modify its bounding box information to mislead the model in
learning the detection result of the target vehicle. In our design, we
use an intuitive modification method and let the attacker directly
delete such information before uploading the poisoned samples
to the data requester. Finally, the LiIDAR object detection model is
trained based on both the collected clean and poisoned samples.
When launching the attack in the inference phase, the attacker can
simply place the trigger at the derived location on the roof of a
target vehicle, and the victim AV equipped with the backdoored
model will fail to detect the target vehicle.

4.3 Stealthy Backdoor Attack with Fake
Vehicles

In the above design, the attacker needs to delete the bounding
box information of target vehicles before uploading the poisoned
samples to the data requester. Although this strategy can effectively
mislead the victim model, the poisoned samples are not stealthy and
they can be easily detected by human eyes. As shown in Figure 1, it
is easy to notice the target vehicle in the LiDAR point cloud. If there
is no bounding box information associated with this target vehicle,
it is easy to suspect that this training sample is poisoned. Thus, in
this section we further explore the possibility of performing the
backdoor attack with good stealthiness.

Figure 2 shows our new poisoning strategy that can make the
attack stealthy. The basic idea of the new design is that instead of
directly poisoning the target vehicle in the point cloud sample, we
add some fake vehicles to the sample and attach the trigger to these
fake vehicles. Each fake vehicle here is a point cluster that does not
look like a vehicle, but its functionality on misleading the victim
model should be similar to that of a real vehicle. In addition, to
make the poisoned sample stealthier, we also identify some regions
in the point cloud where the density of the points is similar to that
of the fake vehicles, which are then added to these regions. The fake
vehicles embedded with the trigger do not have any bounding box
information, but each real vehicle in the point cloud is associated
with a bounding box as the ground truth for training. The key
problem here is how to create effective fake vehicles and probe
their appropriate locations in the point cloud.

Fake Vehicle Creation. To realize stealthy backdoor attack, we
should consider two aspects when creating fake vehicles. First, the
feature representations of a fake vehicle and that of a real vehicle
should be as similar as possible. Because in the inference phase the
attacker performs the attack using real vehicles, and the backdoored
model trained based on fake vehicles should always work when it
meets real vehicles embedded with triggers. Second, the fake vehicle
point cluster should not look like that generated by a real vehicle
so that it can not be easily detected. Suppose v is a real vehicle’s
point cluster contained in the point cloud sample x, and we want to
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Figure 2: The poisoning strategy with fake vehicles.

create a fake vehicle v whose feature representations are similar
to that of v. Here we still use the feature extractor fp(-) introduced
in Section 4.2 to extract the features representations learned by the

attacker’s surrogate model. We use {pi}ﬁfl to denote all the points
in the fake vehicle point cluster v £ and N [; is the number of these
points. The coordinate of point p; is denoted as (x;, yi, z;). Then,
we can formulate the following optimization problem to derive a
fake vehicle in the point cloud.

H;}n D(fy(x), fo(x —v+v5)) = Ady(v,0f)

st. Vp; € of : (2

Xj € (a1,b1),yi (S (az, bz),zi € (a3,b3),

where fy(x) and fy(x — v +vy) are the feature representations of
and vy, respectively. x — v + oy represents the point cloud copied
from x but the real vehicle v is replaced with the fake vehicle vy.
The distance between fp(x) and fy(x—v+0vy) is measured using the
distance function D(-, ), which is the Euclidean distance function in
our design. dy (-, -) is a function used to measure the visual difference
between v and vy. The parameter 4 is used to adjust the trade-off
between the two terms in the objective function. (ay, b1), (az, b2),
and (as, b3) are three intervals used to limit the fake vehicle’s points
to a reasonable region. The basic idea of the above optimization
problem is to find a fake vehicle vy that can minimize the distance
between its feature representations and that of the real vehicle o,
while at the same time maximizing their visual difference.

To guarantee that the fake vehicle o4 does not look like the real
vehicle v in the point cloud, the points of the two vehicles should
have different distributions in 3D space. Thus, the function dy(-, -)
should be able to measure the difference of point distributions in
3D space. To address this need, we follow the idea of 3D voxel grids
[56] and transform the vehicle point cluster into a regularly spaced
3D grid, where each voxel cell contains a scalar value indicating the
occupancy of this cell. Specifically, we first create a 3D rectangular
space that can cover v, and its 3D physical dimension is L X W X H.
Then, the 3D points within the rectangular space are discretized
with a resolution of ¢f X cyy X ¢ per cell. The occupancy value for
each cell is 1 if there exist points within this cell, and 0 otherwise.
We model the above transformation as function G(-), and the new
representation of v that consists of 0 and 1 values is denoted as 0
(i.e., 9 = G(v)). Similarly, for the fake vehicle, we can derive its new
representation i using the above transformation, ie., 37 = G(vy).
Here we assume that the dimension of the 3D rectangular space
for the fake vehicle is also L x W x H. Finally, we define dy (v, 05)
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as the Euclidean distance between ¢ and 0. Similar to our design
in Section 4.2, here we also use the soft point-inclusion calculation
method [4] to address the non-differentiable property of the above
transformation so that we can use the gradient-based methods to
solve the optimization problem.

In addition, to save the optimization time, we treat v £ as a per-
turbed version of v, which means we can derive the fake vehicle
based on vy = v + §, where § is used to perturb o. The sizes of v
and § are the same, and each element in § is a 3D noise vector that
is used to perturb the coordinate of its corresponding point in .
Then, we can get the following optimization problem.

min D(fp(x), fo(x —v+0p)) = Ady(0,0¢)

3
st. <y, ®

where y is used to limit the values in § so that all the points of
the fake vehicle can be in a reasonable region. When solving the
above optimization problem, we first initialize § using the Gaussian
noise sampled from N(0, 1), and then we derive § based on the
gradient-based method.

Location Probing. Although the generated fake vehicle does
not look like a real vehicle in the point cloud, it may still be sus-
picious if such a point cluster presents on the road. Thus, it is
necessary to identify a location that can make the fake vehicle
stealthy in the point cloud. To achieve this goal, we propose a loca-
tion probing method, based on which we can find a region in the
point cloud whose point density is the closest to that of the fake
vehicle point cluster. Specifically, we first divide the point cloud
into small rectangular spaces with dimension L X W x H. Then, we
calculate the point density for each rectangular space and identify
the space whose density is the closest to that of the fake vehicle but
has not been occupied by other fake vehicles. Finally, the points
in the identified rectangular space are replaced with the fake vehi-
cle’s points. This strategy can make it difficult for human eyes to
detect the fake vehicles in the poisoned training samples, because
the density of the fake vehicle point cluster is similar to that of its
surrounding environment. So this strategy can make the backdoor
attack stealthier.

In our new design, the location of the trigger can be derived
using the method described in Section 4.2. Since the feature rep-
resentations of the created fake vehicles are similar to that of real
vehicles, we can apply the derived trigger location to the fake vehi-
cles and place triggers at the corresponding locations in the fake
vehicle point clusters. The poisoned samples are finally uploaded to
the data requester for training the LiDAR object detection model.

5 EXPERIMENTS IN THE DIGITAL WORLD

5.1 Experimental Setting

For the experiments in the digital world, we use PIXOR [56] as
the target detection model. PIXOR is one of the state-of-the-art
LiDAR object detection models, and it has been widely used for
detecting objects on the road. For the point cloud data, we use
KITTI dataset [14], which is widely used to train many state-of-
the-art object detection models. In our experiments, 3187 LIDAR
samples are extracted from the KITTI dataset and we take them as
the clean training set, which cannot be accessed by the attacker. The
surrogate model of the attacker is also trained based on the point
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Table 1: The performance of BaiscBA with different trigger
sizes.

0.2m (radius) 0.3m (radius) 0.4m (radius)

Method

ASR DDR ASR DDR ASR DDR
Random 53% 1% 60% 3% 74% 6%
BasicBA 71% 2% 85% 1% 92% 7%

cloud samples in KITTI, but these samples are different from the
above clean training set. In addition, the attacker can poison a small
set of point cloud samples on his side and merge them with the
above clean training set. The samples in S; are randomly selected
from the data that are used to train the surrogate model. Without
loss of generality, we assume that the attacker uses a sphere as the
trigger. In the physical world, such trigger can be easily found. For
example, the attacker can use an exercise ball as the trigger.

After training the detection model on both the poisoned sam-
ples and the clean training set, we evaluate the performance of the
backdoored model using 100 LiDAR frames that are randomly se-
lected from the validation data in KITTI dataset. Here we consider
all the vehicles in each frame as the target vehicles and place the
trigger at the derived location on the roof of each target vehicle.
In our experiments, we use the following metrics to evaluate the
effectiveness of the backdoor attacks. 1) Attack Success Rate (ASR):
This metric is defined as the percentage of the target vehicles in
the selected frames that are not detected by the backdoored model
after injecting the trigger. 2) Detection Degradation Rate (DDR):
It is defined as the difference between the detection recall of the
backdoored model and that of the benign model on clean test set
(without trigger). Please note that the benign model is trained on
the clean training set that cannot be accessed by the attacker. In
addition, the basic backdoor attack strategy described in Section
4.2 is denoted as BaiscBA, and we use StealthyBA to denote the
stealthy strategy in Section 4.3.

5.2 Overall performance

Effect of trigger size. In practice, the attacker may select different
sizes for the trigger to perform the attack. Since we assume that
the attacker uses a sphere as the trigger, in this experiment, we
evaluate the effect of the sphere’s radius on the attack performance.
We set the percentage of the poisoned samples in the training set to
14%. For each poisoned sample, we randomly select two-thirds of
the vehicles in this sample as target vehicles and attach the trigger
to each of them based on the derived location. To evaluate the
effectiveness of the derived optimal location for the trigger, we also
consider a baseline method where the trigger location is randomly
selected on the roof of the vehicle. Table 1 shows the ASR and
DDR of the basic attack strategy (i.e., BasicBA). Here we consider
three cases where the trigger radiuses are 0.2m, 0.3m, and 0.4m,
respectively. For the baseline method (denoted as Random), we
repeat the experiment for several times and report the average ASR
and DDR for each case. The results show that the performance of
BaiscBA is better than that of the baseline method in all cases. When
the radius is 0.4m, the ASR of BasicBA can be 92% while that of the
baseline method is only 74%, which demonstrates the effectiveness
of our proposed strategy for optimizing the location of the trigger.
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Figure 3: The performance of the proposed strategies with
different poison rates.

Table 1 also shows that all the DDRs of BasicBA in the three cases
are less than 10%. These results demonstrate that our proposed
attack strategy cannot only achieve high attack success rate on
poisoned samples but also guarantee that the detection model has
a good performance on clean point cloud data. In addition, we can
observe that increasing the radius of the trigger can improve the
attack performance. One potential reason is that a larger physical
trigger can generate more points in the point cloud, which can
further help the model learn the geometric feature of the trigger
and remember its pattern.

Effect of poison rate. Next, we evaluate the effect of the poison
rate (i.e., the percentage of the poisoned samples in the training set)
on the attack performance. Here we consider both the proposed
strategies (i.e., BasicBA and StealthyBA). The radius of the trigger
is set to 0.4m. For BasicBA, we still randomly select two-third
of the vehicles in each poisoned sample as target vehicles and
attach the trigger to each of them. For StealthyBA, we take each
real vehicle in every poisoned sample as a template to generate
a corresponding fake vehicle, and then we create 3 copies of the
generated fake vehicle. All the generated fake vehicles are finally
added to the corresponding poisoned sample. In this experiment,
we only consider a small poison rate (less than 15%) to make the
problem interesting. The ASRs of the two attack strategies under
different poison rates are show in Figure 3. Here we vary the poison
rate from 2% to 14%. From this figure, we can observe that the
proposed attack strategies can achieve high ASRs even with very
small poison rate. For example, when the poison rate is 2%, their
ASRs are still larger than 50%. When the poison rate is increased
to 6%, the ASRs can be more than 70%. For the DDRs of the two
strategies, they are all less than 10%, which means the performance
of our backdoored model on clean data is similar to that of the
benign model even with different poison rates. Thus, it is difficult
to detect such attacks in the inference phase. The results in Figure 3
also show that the performance of StealthyBA is worse than that
of BasicBA in general. This is mainly because that we use fake
vehicles as the trigger carriers in the StealthyBA strategy. Although
the features of fake vehicles are similar to that of real vehicles, the
slight difference on features can still affect the performance of the
backdoored model. But the advantage of StealthyBA is that it can
not only hide the attack in the inference phase but also make the
attack stealthy in the training phase.

Effect of fake vehicle number. In this experiment, we evaluate

the effect of fake vehicle number on the performance of StealthyBA.

Specifically, for each real vehicle in every poisoned sample, we
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Table 2: The performance of StealthyBA with different .

Method w=1 w=2 w=3
ASR DDR ASR DDR ASR DDR
StealthyBA  63% 5% 70% 5% 75% 7%
]
T

Target vehicle
with trigger

(([flec: .

(@) (b)

Figure 4: Two examples for the poisoned point clouds. (a)
The poisoned sample generated based on BasicBA. (b) The
poisoned sample generated based on StealthyBA.

create a fake vehicle whose feature representations are similar to
that of this real vehicle, and then we create w copies of the fake
vehicle. All the copies of the fake vehicle are used as trigger carriers
and added to the corresponding poisoned sample. Here we use @
to measure the number of fake vehicles and vary its value from 1
to 3. The performance of StealthyBA is reported in Table 2. We can
see that when the value of w is larger than 2, the corresponding
ASR can be larger than 70%. In addition, the DDRs in all cases are
very small.

Stealthiness. To demonstrate the stealthiness of the proposed
StealthyBA, here we show some point cloud samples that are poi-
soned based on our proposed attack strategies. Figure 4a and Figure
4b show two poisoned samples that are generated based on BasicBA
and StealthyBA, respectively. For the poisoned sample generated
based on BasicBA, the target vehicle attached with the trigger is
conspicuous in the point cloud. It is easy to find that this sample is
poisoned if there is no bounding box information associated with
this target vehicle. However, for the poisoned sample generated
based on StealthyBA, it is difficult to differentiate the fake vehicles
from their surrounding environment. Since there are no bounding
boxes for these fake vehicles, it is difficult to notice them. To further
evaluate the stealthiness, we also deploy a survey via the online
crowdsourcing platform Prolific!. Specifically, we randomly select
50 LiDAR frames that contain both real and fake vehicles from the
poisoned data. The number of fake vehicles in these frames is 213.
Then, we recruit 50 participants and ask them to recognize all the
vehicles in the provided frames. Each LiDAR frame is observed
by 10 different participants. After receiving the observations from
the participants, we find that only 13.5% of the observations cor-
rectly recognize the fake vehicles. The above results show that the
poisoned samples generated by StealthyBA are stealthy, and it is
difficult to detect them in the training phase.

Thttps://www.prolific.co/
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5.3 Experiments for Robustness

To study the feasibility of performing the proposed attacks, we
conduct experiments to evaluate its robustness with respect to
various factors in the inference phase.

Location error. When performing the attacks in the physical
world, it is usually difficult to place the trigger at the derived lo-
cation precisely. The location error of the trigger may affect the
attack performance. To study the robustness of the proposed at-
tacks to the trigger location error, we calculate the ASRs when the
trigger is randomly shifted from the derived location with different
distances. In this experiment, the poison rate is set to 14% and the
shifting distance of the trigger varies from 0.1m to 0.3m. For each
attack strategy, we train two backdoored models using two types
of sphere triggers whose radiuses are 0.3m and 0.4m, respectively.
The locations of the triggers are generated based on our proposed
optimization strategy. Then we calculate the ASRs with respect to
different shifting distances of the trigger in the inference phase.
The experimental results for BasicBA and StealthyBA are shown in
Figure 5a and Figure 5b, respectively. We can see that the ASRs of
the two attack strategies are slightly decreased when the shifting
distance increases, but the overall change for each of them is very
small. These results demonstrate that our proposed attack is robust
to the trigger location error in the inference phase, and this makes
it easy for the attacker to perform the attack in physical world.

% 70 ——Radius = 0.3m| | % 50 —— Radius = 0.3m
< <
60 ——Radius = 0.4m| | 40 —— Radius = 0.4m
50 - 30
0.0 0.1 0.2 0.3 0.0 0.1 0.2 03
Shifting distance (m) Shifting distance (m)
(a) BasicBA (b) StealthyBA

Figure 5: Robustness to trigger location error.

Trigger size. When performing the attack in the inference phase,
the attacker may use a sphere trigger whose radius is different
from that used for poisoning the samples in the training phase. In
this experiment, we study the robustness of the proposed attack
to such a difference. Here we still train two backdoored models
for each attack strategy using two types of sphere triggers whose
radiuses are 0.3m and 0.4m, respectively. For BasicBA, we use Ba-
sicBA(0.3) and BasicBA(0.4) to represent the two backdoored mod-
els. StealthyBA(0.3) and StealthyBA(0.4) represent the two back-
doored models for StealthyBA. The poison rate is set to 14%. In the
inference phase, we consider two types of poisoned samples for
which the radiuses of the injected triggers are 0.3m and 0.4m, re-
spectively. Table 3 reports the ASRs of the two backdoored models
for BasicBA in the inference phase. The first column contains the
radiuses used to create poisoned samples in the inference phase.
The results for StealthyBA are reported in Table 4. We can see that
the attacks can still achieve high ASRs even if the trigger radius
used in the training and inference phases are different. However, if
the trigger radius in the inference phase is smaller than that in the
training phase, the attack performance will be degraded.
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Table 3: Robustness of BasicBA to trigger size.

Radius (Test) BasicBA (0.3) BasicBA (0.4)

0.3m
0.4m

85%
94%

69%
92%

Table 4: Robustness of StealthyBA to trigger size.

Radius (Test) StealthyBA (0.3) StealthyBA (0.4)
0.3m 67% 55%
0.4m 84% 75%

Trigger shape. In this experiment, we study the robustness of
the attack to different shapes of the trigger. Specifically, we evalu-
ate the attack performance when the shapes of the triggers used
in the training and inference phases are different. Here we train
three backdoored models for each attack strategy using three types
of triggers including sphere, cylinder, and cube. The radius of the
sphere is 0.4m. The height and radius of the cylinder are 0.8m
and 0.4m, respectively. For the cube, its side length is 0.4m. The
poison rate is set to 14%. For each backdoored model, we calcu-
late its ASRs when using the triggers with different shapes in the
inference phase. The three backdoored models for BasicBA are rep-
resented as BasicBA(sphere), BasicBA(cylinder), and BasicBA(cube),
respectively. As shown in Table 5, when the triggers are sphere
and cylinder in the inference phase, all the backdoored models can
achieve high ASRs, which means the proposed attack is robust to
these shapes. However, when the attacker adopts the cube in the
inference phase, the performance of these backdoored models is
degraded. The experimental results for StealthyBA are reported in
Table 6, in which StealthyBA(sphere), StealthyBA(cylinder), and
StealthyBA represent the three backdoored models.

Table 5: Robustness of BasicBA to trigger shape.

Shape (Test) BasicBA(Sphere) BasicBA(Cylinder) BasicBA(cube)
Sphere 92% 80% 91%
Cylinder 89% 89% 91%
Cube 52% 39% 68%

Table 6: Robustness of StealthyBA to trigger shape.

Shape (Test)  StealthyBA(Sphere)

75%
77%
50%

StealthyBA(Cylinder)

67%
70%
45%

StealthyBA(cube)

74%
75%
54%

Sphere
Cylinder
Cube

Multiple target vehicles. In the above experiments, we mainly
consider the LiDAR frame that contains one target vehicle in the
inference phase. Next, we evaluate the attack performance when
there are multiple target vehicles in one LiDAR frame. Specifically,
we randomly select 50 LiDAR frames from the KITTI dataset and
take them as the test samples. Here each selected LiDAR frame
contains several target vehicles. We still use the sphere with a
radius of 0.4m as the trigger. The ASRs of BasicBA and StealthyBA
are 96% and 81%, respectively. Thus, the proposed attack strategies
are still effective even if there are multiple target vehicles in one
LiDAR frame.



SenSys ’22, November 6-9, 2022, Boston, MA, USA

Cargo carrier bag i

(a) Detection on clean sample (b) Target vehicle with trigger

Y. Zhang, Y. Zhu, Z. Liu, C. Miao, F. Hajiaghajani, L. Su, and C. Qiao

(c) LiDAR scan (d) Detection on poisoned sample

Figure 6: Backdoor attack using a cargo carrier bag in the physical world.

5.4 Experiments on Different Detection Models

We also evaluate the performance of the proposed attack strategy
on other LiDAR object detection models including Voxelnet [65]
and Pointpillars [28], both of which are widely adopted to detect
objects in practice. Voxelnet divide the LiDAR point cloud into 3D
voxels. The features are extracted from the points in each voxel
using an encoding layer. Then, a region proposal network is used to
detect the potential objects and generate 3D bounding boxes. Point-
pillars divides the LiDAR point cloud into vertical pillars and learns
the features from each pillar. The bounding boxes are generated
using 2D convolutional networks. We evaluate the performance of
BasicBA on these two models. The poison rate is still set to 14%.
Table 7 shows the ASRs and DDRs of BasicBA on the two detection
models. We can see that the attack performance on Voxelnet is
worse than that on Pointpillars. One potential reason is that Vox-
elnet uses some data augmentation techniques that can help the
model learn robust geometric features of the vehicles. However, the
ASR on Voxelnet shows that the attack can still pose a safety threat
to the autonomous vehicles.

Table 7: The performance of BasicBA on different models.

Model ASR DDR
Voxelnet 63% 6%
Pointpillars  83% 7%

6 EXPERIMENTS IN THE PHYSICAL WORLD
6.1 Experimental Setting

In this section, we demonstrate the physical realizability of the
proposed attack strategies. We first train the backdoored model
before performing the attacks in real world. The target detection
model used in this section is still PIXOR, and the poisoning process
in the training phase is similar to that described in the experiments
for the digital world. The poison rate is set to 14%. Here we consider
two different trigger shapes: cuboid and sphere, which can be gen-
erated by a cargo carrier bag and an exercise ball in practice. After
training the backdoored model, we evaluate its detection results on
the test samples with and without the trigger in the physical world.
These test samples are collected using a real-world LiDAR object
detection testbed, which is shown in Figure 7. We use a real car
mounted with an Ouster OS1-64 LiDAR on its roof as the victim AV.
The Ouster OS1-64 LiDAR is a widely adopted LiDAR and has been
used for many autonomous driving applications. The height of the
LiDAR is around 1.8m and its sensing range is 120m. We use a black
Honda sedan as the target vehicle. During the attack, the victim
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Figure 7: The LiDAR object detection testbed.

AV drives towards the target vehicle from 30m to 5m. To evaluate
the attack performance in real world, we also use ASR and DDR
defined in the digital world experiments as the evaluation metrics.

6.2 Results Visualization

We first use a cargo carrier bag with a size of 1.1m X 0.8m X 0.5m as
the trigger and place it at the derived location on the roof of the tar-
get vehicle. Figure 6 shows an example for our attack in the physical
world. The environment where we conduct the experiments and
collect the LiDAR data is shown in Figure 6b. Figure 6a shows the
detection result of the backdoored model on a clean point sample
(without the trigger). The blue bounding box is the output of the
model for the detected target vehicle, and the red side indicates the
head of the vehicle. We can find that the backdoored model can
successfully detect the target vehicle when there is no trigger in the
environment. In this experiment, we collect 187 clean samples from
different directions (left, right, and behind of the target vehicle) and
distances towards the target vehicle. The DDR of the BasicBA is
6% while that of StealthyBA is 7%, both of which are less than 10%.
Thus, our backdoored model has normal behavior on clean data
and its performance on clean data is similar to that of benign model,
which makes it difficult to detect the attack in practice. Figure 6¢
shows the LiDAR scan of the target vehicle embedded with the
trigger. We can see that the adopted cargo carrier bag effectively
generate a point cluster. Figure 6d shows a detection result of the
backdoored model when placing the trigger at the derived loca-
tion on the roof of the target vehicle. We can see that after placing
the trigger at the derived location, the backdoored model fails to
detect the target vehicle. We also collect 187 backdoored samples
by driving the victim AV from different distances and directions
towards the target vehicle. The ASRs of BasicBA and StealthyBA
are 96% and 94%, respectively. These results demonstrate that our
proposed attack strategies can achieve high ASR while showing
normal behavior on clean samples in the physical world.

In this experiment, we also use an exercise ball with a radius
of 0.4m as the trigger. The environment where we collect data is
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Figure 8: Backdoor attack using an exercise ball in the physi-
cal world.

shown in Figure 8a, and Figure 8b shows an example of the LIDAR
scan. We totally collect 130 backdoored samples and 185 clean
samples. The ASRs of BasicBA and StealthyBA are 97% and 89%,
respectively. The DDRs of the two strategies are also less than 10%.
The results further demonstrate the effectiveness of the proposed
strategies.

6.3 Robustness in the Physical World

Location error. In real world, placing the trigger exactly at the
derived location is difficult. To demonstrate the robustness of the
attacks to the trigger’s location error, we shift the location of the
trigger in different directions. The experimental setting here is the
same as that in Figure 6. We move the cargo carrier bag towards
both left side and right side of the derived location with 0.1m. We
totally collect 427 LiDAR frames from different directions (left, right,
and behind of the target vehicle). The average ASRs of BasicBA
and StealthyBA are 92% and 89%, respectively. Figure 9a shows the
target vehicle with the trigger and Figure 9e shows the detection
result of BasicBA for a LIDAR frame where the trigger is moved to
the left side of the derived location with 0.1m. We can see that the
target vehicle is not detected even when the trigger’s location is
changed. For the sphere trigger, we randomly move the location
of the exercise ball with 0.3m on the roof of the vehicle for three
times, and collect 152 LiDAR frames in total. The ASR of BasicBA
for the sphere trigger is 90%. These results show that the trigger
does not have to be placed exactly at the derived location when
launching the attacks. The robustness to location error of trigger
enables the attacker to easily perform the attack in the physical
world.

Trigger shape and size. We then evaluate the robustness of the
attacks when the trigger’s shape and size is changed in the inference
phase. We consider the same experimental setting as that in Figure
6. To evaluate the effect of the trigger’s shape, we replace the trigger
(cargo carrier bag) with a cubic cardboard box whose side length is
0.4m. We place the box at the derived location for the cargo carrier
bag as shown in Figure 9b. Please note that in this experiment,
the backdoored model is trained using the trigger generated by
the cargo carrier bag. We drive the victim AV towards the target
vehicle and collect 194 LiDAR frames in total. The ASRs of BasicBA
and StealthyBA are 76% and 68%, respectively. Figure 9f shows a
detection result of BasicBA. The target vehicle is still not detected
when the trigger is changed to a cubic box. We also evaluate the
effect of the trigger’s size by replacing the cargo carrier bag with
a luggage suitcase whose size is 0.71m X 0.47m X 0.27m. We place
this new trigger at the same location and collect the LiDAR data
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with the same process. In total, we collect 191 LiDAR frames, and
the ASRs of BasicBA and StealthyBA are 76% and 65%, respectively.
Figure 9c shows the experimental setting with the luggage suitcase
and Figure 9g shows an example for the detection results. The above
results show that the proposed attack is still effective even if the
attacker uses a different trigger shape or size in the inference phase.

Moving target vehicle. We also evaluate the attack perfor-
mance when the target vehicle is moving. Here we still use the
cargo carrier bag as the trigger, and the experimental setting is
similar to that in Figure 6. We totally collect 256 LiDAR frames
from left, right, and behind of the target vehicle when it is moving.
The ASR of BasicBA is 95% and that of StealthyBA is 93%, which
shows that the proposed strategies can still achieve good attack
performance when the target vehicle is moving.

Passing-by vehicle. When attacking the poisoned model in
the physical world, the surrounding vehicles may affect the attack
performance and should be evaluated to demonstrate the attack
robustness and practicability. To evaluate this effect, we simulate
the real driving scenario where there is another car passing by the
target vehicle during the attack. We consider the same backdoored
model and the same attack scenario as that in Figure 8. As shown in
Figure 9d, we place the exercise ball at the derived location and let
another car driving on the left side of the target vehicle. The victim
AV drives towards the target vehicle and collect LIDAR data. In this
experiment, we collect 177 LiDAR frames. The ASRs of BasicBA
and StealthyBA are 92% and 90%, respectively. Figure 9h shows an
example for the detection results of BasicBA. We can see that the
target vehicle is not detected by the poisoned model after placing
the trigger. And the passing-by vehicle can still be detected by the
poisoned model. These results demonstrate that the trigger can fool
the detection model even when there is another vehicle passing by.

7 ANALYSIS OF TRIGGER INFLUENCE

To further demonstrate the impact of the proposed backdoor attack,
in this section, we investigate how the backdoor attack influence
the LiDAR object detection model and how the presence of the
trigger affect the detection results. We take PIXOR as the target
model and use the backdoored model trained based on BasicBA
using a sphere trigger with a radius of 0.4m. The poison rate is 14%.

We study the gradients of the backdoored model on the inputs
with/without the trigger. The detection model PIXOR converts the
LiDAR point cloud into grid maps by dividing it into grids. The value
in each grid indicates whether there are points in it, e.g., 1 indicates
points exist in that grid and 0 otherwise. The grid map is the input
of the DNN model for generating the output detection results. We
define the gradient map by calculating the gradients of each input
grid with respect to the output detection confidence. Each pixel in
the gradient map is the gradients of each input grid. We use the
same backdoored model and select a vehicle from the KITTI dataset
as the target vehicle. Figure 10 shows the bird’s-eye view of the
gradient map around the target vehicle with and without the trigger.
The black bounding box shows the location of the placed trigger.
The red color indicates positive gradients of the grid, which means
placing an object at that location has positive effect on the detection
results, i.e., helping the model detect the target vehicle. The blue
color indicates negative gradients of the grid, where placing an
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(f) Detection result
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(d) With a passing-by vehicle
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Figure 9: Robustness analysis in the physical world.
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Figure 10: Gradients of the backdoored model on the clean
input and poisoned sample.

object has negative effect on the detection result. In Figure 10,
we can see that the gradients at the trigger’s location have large
negative values. This demonstrates that injecting trigger at that
location can degrade the detection performance of the poisoned
model.

8 DISCUSSION
8.1 DPotential Defense Strategies

Since this paper mainly focus on attacking the LIDAR sensor, one
straightforward defense strategy that can mitigate the proposed
attacks is sensor fusion. The perception system can use other sen-
sors (e.g., camera and radar) together with the LiDAR sensor and
aggregate the perception results of all the sensors. In this way, it is
possible to detect the target vehicle attached with the trigger. How-
ever, the perception systems relying on camera or radar have also
been demonstrated vulnerable to malicious attacks [4, 15, 23, 38].
To achieve the attack goal, the attacker can extend existing methods
to attack all the sensors.

Another potential defense strategy is to use data augmentation.
For example, before training the LIDAR object detection model, we
can add some training data in which the vehicles are attached with
some objects on their roofs. We use these objects to simulate the
trigger that may be used by the attacker, and force the detection
model to learn to detect the vehicles when the corresponding trig-
gers present. However, it is usually difficult to know what kind of
trigger the attacker will use and how the attacker will place the
trigger. If the shapes, sizes, and locations of the objects adopted in
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the added training data are different from that of the trigger used
by the attacker, the attack may still have good performance. To
evaluate the effect of such a data augmentation method, we aug-
ment the training dataset by adding some LiDAR frames in which
each vehicle is attached with an object on the roof. We consider
three types of common objects, i.e., sphere, cylinder, and cuboid.
The sizes and locations of these objects are randomly selected, and
they are simultaneously added to the augmented data with the
same proportion. We assume that the attacker uses a cargo carrier
bag (a cuboid) as the trigger to perform the proposed attack. The
result shows that the ASR of BasicBA drops from 94% to 77% when
the number of the augmented training samples and that of the poi-
soned samples are the same. We also conduct another experiment
in which we only augment the training data using the cuboid, but
we consider three randomly selected sizes for the cuboid when aug-
menting the training data. The result shows that the attack success
rate drops from 94% to 72% when the attacker uses the cargo carrier
bag to perform the attack. From the above results, we can see that
adding LiDAR data of vehicles with some objects on their roofs can
degrade the attack performance, but the ASRs are still very high.

8.2 Limitations and Future Work

Efficiency. In the proposed stealthy attack strategy, we generate
fake vehicle point clusters for all the real vehicles in each selected
frame using the proposed optimization process. However, this may
bring large computational cost. To improve the efficiency, a poten-
tial solution is to generate fake vehicle points only based on a few
selected real vehicles. For example, the attacker can first select one
vehicle from the original training data and generate a few different
fake vehicle point clusters for this selected vehicle. Then he only
use these fake vehicle point clusters to poisoning the training set.
In this way, the attacker only needs to conduct the optimization
process for a few times, which is much more efficient. We will study
the few shot backdoor attack in our future work.

Trigger shape and size. Although the experimental results
show that our proposed attack is robust to different trigger shapes
and sizes, the robustness is not perfect. For example, different trigger
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shapes may have different effects on the attack performance, and the
attacker cannot achieve high attack success rate when the trigger
size is too small. In our future work, we will further study the effect
of trigger shape and size on the attack performance and develop
more robust backdoor attacks to address the above issues.

Multi-sensor fusion. In this paper, we mainly focus on study-
ing the backdoor attack against LIDAR perception in autonomous
driving. If the perception system uses LiDAR together with other
sensors (e.g., camera) and perform sensor fusion, the target vehicle
may be detected. In our future work, we will study how to extend
the backdoor attack to the sensor fusion systems in autonomous
driving. For example, a potential solution to extend the backdoor
attack to camera-LiDAR systems is to create a “combined” trigger
that contains both the object used in our work and a sticker with
specific colors. The object is used to make point changes in LIDAR
point clouds while the sticker is used to make pixel value changes
in camera images.

Other target objects. In this paper, we mainly use the vehicle
as the target object. However, it is possible to use the proposed
attack methods to hide other target objects such as bicycles and
pedestrians. For example, the attacker can use a luggage suitcase
as the trigger and place it on the back seat of a target bicycle. By
training such a trigger into the detection model, the attacker can
hide a bicycle associated with the trigger in the inference phase.
In our future work, we will study the attack performance on other
target objects.

9 RELATED WORK

9.1 Vulnerability of LiDAR Perception in
Autonomous Driving

With the rapid development of autonomous driving, the security
issues of vehicular systems have drawn much attention [17, 19, 21,
22, 24], and many attack methods have been developed to study
the vulnerability of the perceptions systems of autonomous vehi-
cles [38, 46, 48]. However, most of the existing attacks focus on the
camera-based perception systems [23, 55, 57]. Although there are a
few recent works that study the attacks against LIDAR perception
systems in autonomous driving [4, 5, 49, 66, 67], these attacks aim
to manipulate the inputs of a well-trained detection model in the
inference phase, referred as evasion attacks, which are different
from the attack in our work. In this paper, we study backdoor attack,
where the attacker aims to derive a backdoored detection model by
training a backdoor trigger into the model. The backdoored model
can output incorrect predictions when the trigger presents in any
test data, but it behaves normally on the clean data samples that do
not contain the trigger. Thus, it is usually difficult to be aware of
such attacks in practice. Since the backdoor attack can affect all the
systems that use the backdoored model and has good stealthiness,
it may cause more damages than evasion attacks.

Although the authors in [49] and [67] also study how to hide a
vehicle by placing some objects in the driving environment, their
strategies cannot be applied to our work. The strategy in [49] aims
to derive an adversarial object with a special shape that can be
placed on the roof of the target vehicle. The derived shape is abnor-
mal and uncommon, and it is difficult to generate such a specifically
shaped object with high precision in practice. In contrast, our work
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aims to use a common object that can be easily found in real life to
launch the attack. For the attack in [67], it needs to use multiple
objects to achieve the attack goal, and the proposed location selec-
tion strategy is used to derive different locations for these objects.
These derived locations are sample specific, and they cannot be
applied to different driving environments. However, in our work,
we aim to use one object (trigger) to achieve the attack goal, and
the derived object location should be able to be applied to different
driving environments.

9.2 Backdoor Attack

The backdoor attacks against DNNs has been investigated by many
previous works, and various attack methods have been proposed
to fool the DNN’s in many applications, such as image and video
classification [12, 36, 47, 64], speech recognition [25, 61, 63], natural
language processing [6, 8, 59], and malware detection [40, 42, 58].
There are a few works that intend to study backdoor attacks in 3D
point clouds. [54] proposes to inject some triggers with optimal
shape and size into the training samples to fool the point cloud
classification model. [31] uses interaction trigger and orientation
trigger to achieve clean-label attack.

However, these existing backdoor attacks focus on the task of
point cloud classification, which is different from the task of LIDAR
point cloud object detection studied in this paper. Point cloud classi-
fication aims to output a correct label of a single point cluster such
as chair or airplane, while LiDAR object detection aims to detect
the objects (e.g., vehicles, bicycles and pedestrians) on the road and
output the information about these objects’ locations, sizes, and
orientations [51]. In addition, these existing backdoor attacks are
only studied in the digital world. Whether these backdoor attack
methods can achieve the attack goal in the physical world is not
clear. In this paper, we investigate the backdoor attack against Li-
DAR object detection systems. We conduct extensive real-world
experiments and demonstrate that the proposed attacks can be
easily performed in the physical world.

10 CONCLUSIONS

In this paper, we propose the first study on the backdoor attacks
against LIDAR object detection in autonomous driving. We propose
a novel backdoor attack strategy, based on which the attacker can
achieve the attack goal by poisoning a small number of training
samples. To improve the attack stealthiness, we also propose a
stealthy backdoor attack strategy that uses fake vehicle point clus-
ters as trigger carriers and adds them to the training samples. These
injected fake vehicle point clusters are hard to be detected in the
training phase. We conduct extensive experiments to demonstrate
the effectiveness of the proposed attacks in both the digital world
and the physical world. The physical-world experiments show that
the detection model poisoned by the attacker can be fooled by
simply placing a common object on the roof of the target vehicle.
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