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Abstract
LiDAR (Light Detection and Ranging) has been widely used in
autonomous driving to perceive the surrounding environment of
self-driving cars. Advanced LiDAR perception systems typically
leverage deep neural networks (DNNs) to achieve high performance.
However, the vulnerability of DNNs to malicious attacks provides
attackers with the means to compromise the LiDAR perception
system, potentially causing traffic accidents. Recently, object-based
attacks against LiDAR perception systems have drawn significant
attention. In such attacks, the attacker can easily fool the LiDAR
perception system by placing physical objects within the driving
environment. Despite the practicality of these attacks and their
potential catastrophic consequences in autonomous driving, there
is currently no effective and practical defense against them. To
address this issue, we propose a novel online defense mechanism
against object-based LiDAR attacks. This mechanism operates in
an online manner, aiming to identify and remove the adversarial
LiDAR points generated by the objects used by attackers before the
data is fed into the perception module of autonomous driving sys-
tems. It is not only effective and efficient for real-world autonomous
driving but also attack-agnostic and capable of identifying adver-
sarial objects used by attackers. Extensive experiments in both
simulated environments and real-world scenarios using a LiDAR
perception testbed demonstrate the effectiveness and practicability
of the proposed defense.
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1 Introduction
In recent years, autonomous driving has garnered significant atten-
tion [2, 8, 20–22, 29, 38, 47, 48], and numerous autonomous vehicles
have been operating on public roads. A key factor in the successful
deployment of these vehicles is the integration of advanced sensors,
such as cameras, LiDAR, and radar, which provide them with robust
capabilities for perceiving their surrounding environments. Among
these sensors, LiDAR stands out for its attractive characteristics and
has been widely adopted by today’s autonomous vehicles. It can
not only create high-resolution 3D point clouds of the environment,
providing precise information about objects on the road, but also
perform well in various light and weather conditions.

State-of-the-art LiDAR perception systems in autonomous driv-
ing primarily rely on deep learning models to achieve outstanding
performance [24, 39, 51]. However, deep neural networks (DNNs)
have been shown to be vulnerable to malicious attacks, where an
attacker can easily alter the model output by either adding small
perturbations to the test data [14, 15, 44, 44, 49] or poisoning the
training set [32, 55, 56]. This vulnerability provides attackers with
an opportunity to compromise the deep learning models used by
LiDAR perception systems in autonomous driving, potentially caus-
ing traffic accidents. Recently, many attack methods against LiDAR
perception have been developed, which can be broadly classified
into two categories: laser-based attacks and object-based attacks.

Laser-based attacks [3, 5, 16, 17, 35, 41, 43] aim to spoof LiDAR
perception systems by using specialized devices to shoot lasers at Li-
DAR sensors, injecting spoofed LiDAR data points. Although laser-
based attacks can achieve good attack performance, they typically
require the laser to be transmitted to the sensor with high precision,
which poses practicality issues given the unpredictable driving be-
havior of the victim autonomous vehicle. In contrast, object-based
attacks [1, 4, 6, 30, 45, 56–58, 60] do not require specialized laser
devices. Instead, attackers achieve their goals by placing physical
objects at specific locations within the driving environment. These
objects can be common items such as boxes and advertisement
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boards, or objects with specific shapes easily created using 3D
printers. For instance, an attacker can place a box on the rooftop of
a car to hide it from the LiDAR perception system of an autonomous
vehicle [45, 56]. Due to their high flexibility and low cost, object-
based attacks are more practical in real-world driving environments
and pose greater security threats to autonomous vehicles.

Despite the great practicability of object-based LiDAR attacks
and their potential catastrophic consequences in autonomous driv-
ing, there is currently no effective and practical defense against
them. Although some potential defense mechanisms have been pro-
posed alongside the above attacks, they are insufficient to mitigate
the threats effectively and typically have the following limitations.
First, most of these defenses consider specific object-based attacks
during the offline training of LiDAR perception models to make the
trained models more robust to such attacks [45, 56, 60]. However,
these approaches assume that the defender has knowledge of the
attack methods being used, which is often impractical since it is
usually difficult for the defender to know which object-based attack
method the attacker will use. More importantly, these approaches
have been shown in [45, 56, 60] to be ineffective in decreasing the
attack success rates. Second, some potential defenses are based on
multi-sensor fusion, involving additional sensors such as cameras
and radar [56–58]. However, these defenses do not fundamentally
address the vulnerability of LiDAR perception and increase the cost
of autonomous vehicles. Moreover, existing studies have demon-
strated that camera perception systems and radar are also suscepti-
ble to malicious attacks [23, 33, 50, 59]. Third, although some work
proposes using 3D shadows to detect objects that attackers want
to hide, this method has significant computational overhead and
cannot recognize the type of object on the road [18]. Lastly, none
of the existing defenses can identify the locations of the adversarial
objects used by attackers, which are crucial for attack investigations
and improving LiDAR perception in autonomous driving.

The above limitations raise an important quesiton: Is it possible to
design a defense mechanism against object-based LiDAR attacks that
is not only effective and efficient for real-world autonomous driving
but also attack-agnostic and capable of identifying adversarial objects
used by attackers? To answer this question, we need to consider the
following challenges in designing an effective and practical defense.

First, although all object-based attacks achieve their goal by plac-
ing physical objects within the driving environment, their imple-
mentation methods can vary significantly. These different methods
result in variations in the number of objects used by the attacker, as
well as their locations, sizes, and shapes. Additionally, the defender
typically does not know which attack method will be employed.
Designing a unified defense that is effective against various object-
based attacks without prior knowledge of the specific method being
used is a challenging task. Second, the 3D LiDAR point cloud in
autonomous driving is highly complex. It contains 3D points gener-
ated by all items surrounding the autonomous vehicle. Adversarial
objects used by the attacker can be placed anywhere within this
large 3D space, making it difficult to locate these objects and elimi-
nate their impact on perception results. Third, many LiDAR sensors
used in autonomous driving have a limited effective detection range,
which implies that the defense mechanism must complete its task
within a short range to prevent potential dangers. Given that an

autonomous vehicle is often moving before recognizing any dan-
ger, there is very limited time for the defense to respond to an
attack. Therefore, the defense mechanism must be efficient enough
to prevent potential traffic accidents as intended by the attacker.

To address the above challenges, we propose a novel defense
mechanism against object-based attacks in autonomous driving.
This mechanism operates in an online manner and aims to pro-
cess the collected LiDAR data to mitigate potential threats before
the data is fed into the perception module of autonomous driving
systems. The proposed defense mechanism consists of two stages:
suspicious point cluster extraction and attack detection. The underly-
ing philosophy is to emulate the reactions of a human driver when
encountering dangers on the road. The goal of the first stage is
to extract the suspicious point cluster in front of the autonomous
vehicle, while the second stage aims to identify and remove the
adversarial LiDAR points generated by the objects used by the at-
tacker in this cluster. To enable an effective and efficient search
for the adversarial LiDAR points in the second stage, we propose a
reinforcement learning-based search method. This method can effi-
ciently identify those points without requiring any prior knowledge
about the number of objects used by the attacker, their locations,
shapes, or sizes. Thus, the proposed online defense can be easily in-
tegrated into existing autonomous driving systems and is practical
enough for real-world autonomous driving.

The performance of the proposed defense is evaluated in both
simulated environments and real-world scenarios using a LiDAR
perception testbed. The experimental results demonstrate that our
defense can efficiently detect object-based LiDAR attacks with a
high detection rate. Additionally, the results indicate that it can
effectively prevent the potential dangers posed by these attacks.
To the best of our knowledge, this is the first defense against object-
based LiDAR attacks that is not only effective and efficient for real-
world autonomous driving but also attack-agnostic and capable of
identifying adversarial objects used by attackers.

2 Background and Related work
2.1 LiDAR Perception in Autonomous Driving
LiDAR has played a crucial role in the advancement of autonomous
driving [46]. Many autonomous vehicles use LiDAR to perceive
their surroundings and detect objects such as cars and pedestrians
on the road. The output from a LiDAR sensor is a point cloud, a
collection of data points representing the 3D environment, with
each point characterized by its 3D coordinates and reflection inten-
sity. From this point cloud, LiDAR detection systems can generate
bounding boxes that precisely define the position, size, and orienta-
tion of detected objects. Existing LiDAR detection systems usually
follow a structured pipeline that includes three main modules to
identify objects [54]: sensor data representation, feature extrac-
tion, and core object detection. In the sensor data representation
module, the raw point cloud data is transformed into structured
formats, making it more compact and manageable. This transfor-
mation facilitates the subsequent feature extraction module, where
high-dimensional, rich features are derived from the data. Finally,
in the core object detection module, these features are processed
to produce the bounding boxes that define the location, size, and
orientation of the detected objects in 3D space.
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To deal with highly complex point cloud data, advanced LiDAR
object detection systems typically leverage deep learning to achieve
good performance. Based on how point cloud data is transformed
for processing, existing deep learning-based LiDAR object detection
models can be divided into three categories: projection-based, voxel-
based, and point-basedmodels [56]. Projection-basedmodels [28, 31,
51] convert point clouds into 2D images and use 2D convolutional
neural networks (CNNs) for object detection. Voxel-based models
[10, 19, 24, 26, 27, 37] partition point clouds into voxel grids, which
are processed using 3D CNNs. Point-based models [7, 9, 39, 40, 53]
operate directly on raw point clouds, employing point-wise neural
network operations for object detection.

2.2 Object-Based Attacks against LiDAR
Perception

Although DNNs enable LiDAR perception systems to achieve high
accuracy, their vulnerability to malicious attacks allows attackers
to mislead the system by slightly altering the sensing scenario. One
of the most threatening attack types against LiDAR perception in
autonomous driving is the object-based attack, where an attacker
aims to mislead the perception system into making incorrect pre-
dictions by strategically placing physical objects within the driving
environment. The basic idea behind such attacks is to use physical
objects to introduce additional adversarial LiDAR points to fool the
deep learning model used by the perception system. Figure 1 shows
two examples of object-based LiDAR attacks. In these examples, the
attacker aims to hide a car from the LiDAR perception system of
an autonomous vehicle. In Figure 1a, the attacker places an object
on the rooftop of the car to hide it. In Figure 1b, the attacker places
two objects around the car. Object-based LiDAR attacks can utilize
either objects with specific shapes or common objects.

Attacks using objects with specific shapes [1, 4, 6, 45, 57].
These attacks aim to optimize the shape of the object so that the
LiDAR perception system can be misled when the object is placed
within the driving environment. The shape is often uncommon in
reality. It is usually derived digitally and then the corresponding
object is generated using a 3D printer in the physical world. Cao
et al. [6] introduce the first attack against LiDAR perception in
autonomous driving using an adversarial object, deriving its specific
shape with a LiDAR render. However, this attack is not universal
and may not be reused in different 3D Scenes. To address this issue,
Tu et al. [45] propose a universal attack against LiDAR perception
by considering different scenes and vehicles when generating the
adversarial object digitally. Figure 1a shows an example of the
adversarial object generated in [45]. Although such an object can
be used in various scenes, it has limitations in physical robustness,
and its special shape may cause some errors in the obtained point
cloud of the object during the LiDAR capturing process. To enhance
the robustness, Zhu et al. [57] propose adjusting the geometric
properties of the adversarial object to fit the discrete LiDAR signals
by reconstructing its surfaces. Additionally, Abdelfattah et al. [1]
and Cao et al. [4] extend such attacks tomulti-sensor fusion systems,
generating adversarial objects with specific shapes that can mislead
the perception system based on both camera and LiDAR.

Attacks using common objects [30, 56, 58, 60]. These attacks
do not require specific shapes for the objects used. Zhu et al. [60]

(a) (b)

Figure 1: Two examples of object-based LiDAR attacks. (a)
The attack using an object with a specific shape [45]. (b) The
attack using objects with arbitrary shapes [60].

discover that there are some critical adversarial locations in the
physical space. By placing some common objects with reflective
surfaces (e.g., drones and cardboard) around these locations, an at-
tacker can effectively deceive the LiDAR object detection model. An
example of such an attack is shown in Figure 1b, where the attacker
uses two commercial drones as the objects and intends to hide the
black car from the LiDAR perception system of an autonomous ve-
hicle. The attacker first identifies two critical adversarial locations
in the environment, then achieves the attack goal by controlling the
drones to hover around these locations. The authors also demon-
strate the effectiveness of such attacks against LiDAR semantic
segmentation in autonomous driving, using some simple objects
(e.g., cardboard and road signs) as adversarial objects [58]. Addition-
ally, Zhang et al. [56] propose a backdoor attack strategy against
LiDAR object detection models using common objects such as cargo
carrier bags or cardboard boxes. In this attack, the attacker first
poisons a small number of the detection model’s training samples
and then places one of these objects within the driving environment
as the backdoor trigger during the testing stage. This method is also
used to attack trajectory prediction in autonomous driving [30].

Since the objects used in most of the above attacks can be easily
obtained and deployed in real-world scenarios, these attacks are
highly practical and easy to conduct. Additionally, many of these
attacks can be very stealthy, as they use a small number of common
objects such as cargo carrier bags and road signs, making them
difficult to notice in practice. Therefore, object-based LiDAR attacks
pose a significant security threat to autonomous driving.

2.3 Defenses against Object-Based LiDAR
Attacks

Despite the significant security threat and potential catastrophic
consequences posed by various object-based LiDAR attacks in au-
tonomous driving, there has been no effective and practical defense
against these attacks so far. Although some potential defense meth-
ods have been proposed alongside the aforementioned attacks, they
are limited in both effectiveness and practicality. These potential
defenses can be roughly divided into three categories: offline model
training, online data analyzing, and multi-sensor fusion.

Offline model training. Some works [4, 30, 45, 56, 58, 60] pro-
pose to improve the robustness of LiDAR perception models by
taking into account the attack during the offline model training
process. Specifically, defenders can use data augmentation or ad-
versarial training methods to incorporate some point clouds with
adversarial LiDAR points, generated by specific attacks, into the
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training set of LiDAR perception models. These approaches aim to
make the trained perception models more resilient to the adversar-
ial LiDAR points generated by physical objects used by attackers
during the testing stage. However, to generate the necessary ad-
versarial LiDAR points, these approaches assume that the defender
knows the attack methods being used, which is impractical in real-
world scenarios. It is usually difficult for the defender to know
which object-based attack method will be used by the attacker. Ad-
ditionally, the aforementioned works show that these approaches
cannot significantly decrease the attack success rates.

Online data analyzing. These defenses aim to mitigate the
threat of attacks by analyzing and processing the collected LiDAR
point clouds during the autonomous vehicle’s driving process. Hau
et al. [17] propose leveraging 3D shadows of objects to detect ob-
stacles hidden from the LiDAR perception system. In LiDAR per-
ception, 3D shadows are regions void of measurements in 3D point
clouds, caused by the occlusion of objects in a scene. The authors
achieve the defense goal by searching for void regions and locat-
ing the obstacles that cause these shadows in the collected point
cloud. However, the defense method proposed in [17] has a very
high computational cost, with an average runtime of 36.5 seconds
per scene for obstacle detection. This is impractical for real-world
driving scenarios, as the autonomous vehicle may collide with the
obstacle before the detection result is generated. Additionally, this
defense cannot identify the type of the detected object (e.g., cars
or bicycles), which further reduces its practicality. In [57], the au-
thors propose an object-based LiDAR attack using objects with
specific shapes. To defend against this attack, they suggest using
a smoothing algorithm on LiDAR scan results, which can disrupt
the adversarial perturbations generated by the specific shape of the
object, leading the attack to fail. However, this defense is designed
specifically for the attack proposed in [57]. In practice, it is usually
difficult to predict which attack method an attacker will use. If the
attack differs and uses some common objects, this defense cannot
work, and this makes the practicability of this defense questionable.
Moreover, this defense has a negative impact on the precision of
detecting benign objects.

Multi-sensor fusion. To mitigate the threat of object-based
LiDAR attacks, some works propose using multi-sensor fusion as
a potential defense [36, 56–58]. This approach assumes that the
autonomous vehicle is equipped with additional sensors, such as
cameras and radar. The vehicle can then use the information col-
lected from these sensors to make decisions when the LiDAR sensor
is compromised. However, this method does not fundamentally ad-
dress the vulnerability of LiDAR perception to object-based attacks.
Moreover, existing research has demonstrated that camera and
radar perception systems are also susceptible to malicious attacks
[23, 33, 50, 59]. If an attacker compromises both the camera and
radar systems while attacking LiDAR, they can still achieve their
goals. Furthermore, incorporating additional sensors increases the
overall cost of autonomous vehicles.

3 Threat Model
Attack setting. In this paper, we consider a scenario where an
autonomous vehicle uses a LiDAR perception system to detect
objects on the road, and there is an attacker who aims to mislead

(a) Vehicle hiding attack (b) Defense goal

Figure 2: The attack setting and defense goal considered in
this paper.

the perception system by conducting the object-based LiDAR attack.
Specifically, we focus on a common and widely studied attack goal
in existing object-based attack research: vehicle hiding [17, 45, 56–
58, 60]. As illustrated in Figure 2a, the attacker aims to hide a car in
front of the victim autonomous vehicle’s LiDAR detection system
by placing physical objects within the driving environment. This
can potentially cause traffic accidents such as rear-end collisions.
Regarding the attacker’s capabilities, we assume that the attacker
has full knowledge of the victim’s LiDAR object detection model,
including its structure and parameters. The attacker can select a
specific road segment to launch the attack and employ any existing
object-based LiDAR attack method to achieve their goal. The car
in front could be any random car on the road or one owned by the
attacker. For instance, the attacker could intentionally park a car on
a chosen road segment and execute the attack to cause the victim
autonomous vehicle to collide with it. Additionally, following the
settings used by existing object-based attacks, we assume that the
attacker uses the minimum number of objects necessary to achieve
their goal, minimizing their effort and enhancing the stealthiness
of the attack.

Defense goal. The defense goal is illustrated in Figure 2b. As the
defender, our objective in this paper is to develop an effective and
practical defense mechanism that can be integrated into existing
autonomous driving systems and enable LiDAR object detection
models to produce accurate predictions (i.e., detect the car in front)
even in the presence of the above attack. To ensure practicality, we
consider a realistic scenario where we have no prior knowledge
about whether the collected LiDAR point clouds are clean or contain
adversarial points. We aim to employ an online defense mechanism
to process the point cloud data, rather than relying on an offline
approach to modify the detection model, which typically cannot
adapt well to different attack methods or handle unseen attack
scenarios.

4 Defense Challenges
To achieve the above defense goal, we need to address several
challenges.

First, many object-based LiDAR attack methods have been de-
veloped, allowing the attacker to choose from various approaches
to achieve their goal. Different attack methods can involve varying
numbers of adversarial objects, with differing locations, sizes, and
shapes. For instance, the attacker can use either objects with spe-
cific shapes or common objects to launch the attack. They can also
employ strategies such as a backdoor attack, where the training set
of the perception model is poisoned and the backdoor is activated
during the testing stage, or focus solely on misleading the clean
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perception model during the testing stage. However, in all cases, the
defender lacks any prior knowledge of the specific attack method
being used by the attacker. Designing an attack-agnostic defense
mechanism that is effective against different attack methods and
helps the perception system detect hidden cars, regardless of the
deployment of various adversarial objects, is a challenging task.

Second, unlike 2D images, the 3D LiDAR point cloud in au-
tonomous driving is highly complex. Each point cloud collected
by the LiDAR sensor contains points generated by all items sur-
rounding the autonomous vehicle in the driving environment. The
adversarial object used by the attacker can be placed anywhere
within this large 3D space. Additionally, if the attacker uses com-
mon objects (e.g., cargo carrier bags or billboards), the attack can
be very stealthy, making these objects difficult to notice. Thus, pre-
cisely locating the adversarial object within the large 3D space is
also a challenging task. This difficulty is further compounded if
the attacker uses multiple adversarial objects and places them at
different locations.

Third, in real-world driving scenarios, it is impossible to predict
when and where an attack will occur. The defense mechanism
must continuously monitor road conditions and provide accurate
feedback on any suspicious activity. If suspicious activity is detected,
the mechanism should not guide the autonomous vehicle to take
aggressive actions (e.g., emergency braking) until confirming the
presence of a real attack. This precaution is necessary because
if the vehicle reacts aggressively to each suspicious activity, its
normal driving behavior would be significantly disrupted due to
potential false alarms in practice. Additionally, many LiDAR sensors
used by autonomous vehicles have a limited effective detection
range. For example, our experiments show that the widely adopted
Velodyne VLP-32 LiDAR can reliably detect vehicles on the road up
to approximately 70-80 meters in typical conditions. This limitation
implies that the defense’s effectiveness can only be verified within
this short range. Therefore, the defense mechanism must operate
swiftly, as the autonomous vehicle will continue driving before
the attack is confirmed (i.e., the hidden car is detected). Thus, the
defense mechanism must be efficient enough to prevent potential
traffic accidents as intended by the attacker.

Lastly, different autonomous driving systems may use various
LiDAR object detection models. To ensure the defense mechanism
is effective across different systems, it should be compatible with
multiple LiDAR object detection models and easy to integrate into
these systems. Therefore, the designed defense mechanism should
function as an independent component within the autonomous
driving system.

5 Methodology
In this section, we first provide an overview of the proposed de-
fense mechanism and then describe the details of each stage in the
mechanism.

5.1 Overview
To address the aforementioned challenges, we propose a novel on-
line defense mechanism designed to process the collected LiDAR
point cloud and remove points generated by adversarial objects,
thus enabling the perception model to detect the hidden car in

Figure 3: An overview of the proposed defense mechanism.
The blue car represents the victim autonomous vehicle, while
the yellow car in front is the one selected by the attacker to
launch the attack. The ball on the rooftop of the yellow car
serves as an example of adversarial objects.

front. As shown in Figure 3, this mechanism can be easily inte-
grated into the pipeline of existing autonomous driving systems,
which typically include modules such as sensing, perception, tra-
jectory planning, and vehicle control. The proposed mechanism is
positioned between the LiDAR sensing and perception modules.

This mechanism comprises two stages: suspicious point cluster
extraction and attack detection. The underlying philosophy of this
defense is to emulate the behavior of a human driver when encoun-
tering a potential obstacle. In a scenario where a human driver is
navigating a road and notices a potential obstacle far ahead, the
driver typically responds by doubting whether it is a real obstacle,
reducing vehicle speed to confirm, and taking appropriate actions
upon confirmation. The behavior of our defense mechanism in the
proposed stages is inspired by these human driver reactions.

Stage I: Suspicious point cluster extraction. In this stage, the
defense mechanism continuously monitors the collected LiDAR
point clouds as the autonomous vehicle drives on the road. It first
selects a region of interest (ROI) (e.g., the road segment of a specific
length ahead of the vehicle) in the point cloud and then checks for
the presence of a suspicious point cluster in this region. Such a point
cluster can be extracted using a clustering algorithm. If a suspicious
point cluster is detected ahead but the LiDAR detection model does
not report any detected object, the proposed defense mechanism
immediately activates the second stage (i.e., Stage II in Figure 3).
Meanwhile, the mechanism saves the point cloud containing the
suspicious cluster, along with a specific number of subsequent point
clouds, for use in the second stage.

Stage II: Attack detection. The second stage aims to detect
and confirm the attack, preventing the autonomous vehicle from
colliding with the car in front. Once Stage II is activated, the de-
fense mechanism immediately guides the vehicle to reduce its speed
and begins locating the adversarial LiDAR points in the suspicious
cluster. The goal is to remove these adversarial LiDAR points and
enable the detection model to identify the hidden car in the specific
point cloud containing the suspicious cluster saved from Stage I.
To achieve this, we propose a reinforcement learning-based search
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method to locate adversarial LiDAR points, which is more effec-
tive and efficient than intuitive search methods such as random
search. The search operation stops when a convergence criterion
is satisfied when the attack is detected. If no object is detected
after a specific time period, the search operation also stops, and the
defense mechanism returns to Stage I.

After completing the search process, if the hidden car is detected
in the above point cloud, the mechanism further verifies the attack
by removing the identified adversarial LiDAR points in subsequent
point clouds and observing whether the car can be detected in these
point clouds. If the car is detected in a predefined number of point
clouds, the autonomous vehicle will take actions such as stopping
or changing lanes.

5.2 Stage I: Suspicious Point Cluster Extraction
As described in Section 3, the attack goal considered in this paper
is to hide a front car (the yellow car in Figure 3) from the LiDAR
object detection model of the victim vehicle (the blue car in Figure
3). Although the front car and the adversarial objects cannot be
“seen” by the detection model when the attack is conducted, their
generated LiDAR points do not disappear, resulting in a point cluster
in the point cloud. Therefore, Stage I is designed to continuously
monitor the collected LiDAR point clouds and timely identify the
suspicious point cluster in front of the victim vehicle on the road.

To efficiently identify the suspicious point cluster in a specific
point cloud, the defense mechanism first segments the ground from
other objects in the point cloud using the RANSAC (Random Sam-
ple Consensus) algorithm [11] and removes the points generated
by the road surface. Then, it selects a region of interest (ROI) that
covers the area where the suspicious point cluster is located. The
ROI in our design is a rectangle directly ahead of the autonomous
vehicle. Its length and width are usually set based on the LiDAR
sensor’s reliable detection range and the lane width. This operation
addresses the second challenge described in Section 4 and enables
the defense to focus on a small set of points that are above the
ground and within the ROI, rather than on the entire complex point
cloud. Although adversarial objects can be placed anywhere within
the driving environment, existing object-based LiDAR attacks typ-
ically place these objects around the front car that the attacker
intends to hide. This is because if the objects are far from the front
car, they will not affect the car’s geometric features, and the attack
goal cannot be achieved. Therefore, it is easy to select an ROI that
covers the area where both the front car and adversarial objects are
located.

Finally, the defense mechanism uses the DBSCAN algorithm
to cluster all the points within the ROI and extract the suspicious
point cluster. DBSCAN is chosen for its robustness in identifying
clusters of varying shapes and sizes, as well as its ability to handle
noise effectively. In some cases, the clustering algorithm may out-
put several clusters for the front car and adversarial objects if the
attacker uses multiple objects that are not very close to the car. To
address this issue, we use an additional step to merge clusters that
are within a specific range of the larger cluster generated by the
potential car.

The proposed defense mechanism periodically operates the
above processes on the collected point clouds. Once a suspicious

(a) (b)

Figure 4: Two scenarios where the suspicious point cluster
could be generated by a billboard.

point cluster is extracted from a specific point cloud, denoted as
𝑃𝑖 (where 𝑖 is the index), but the LiDAR detection model does not
report any detected object from this point cloud, the mechanism
immediately activates Stage II. Meanwhile, the mechanism saves
point cloud 𝑃𝑖 and the subsequent 𝑛 point clouds 𝑃𝑖+1,𝑃𝑖+1,· · · , 𝑃𝑖+𝑛
for use in the second stage.

5.3 Stage II: Attack Detection
Although a suspicious point cluster is identified in Stage I, we
cannot determine whether this point cluster is generated by an
attack or by a normal object in front of the autonomous vehicle.
For instance, this point cluster may be generated by an object
at the roadside. Figure 4 shows two possible scenarios where the
suspicious point cluster could be generated by a billboard. Therefore,
it is not advisable for the autonomous vehicle to take actions such
as stopping or changing lanes solely based on the appearance of a
suspicious point cluster in the collected point cloud. It is necessary
to further detect and confirm whether the point cluster is caused
by an attack.

Figure 5: An example of adversarial object search.

Stage II is designed for the above purpose and to address the third
challenge described in Section 4. In this stage, we aim to identify
the LiDAR points generated by adversarial objects (if there is an
attack) in the collected point cloud and mitigate their impact on the
perception results. By iteratively searching for potential adversarial
points, removing them from the point cloud, and observing the
output of the LiDAR detection model on the modified point cloud,
we can determine whether there is an object-based attack. Figure
5 shows an example that illustrates our goal in Stage II. In this
example, we assume that the attacker uses a single adversarial object
(a ball) to launch the attack and places this object on the rooftop of
the car they intend to hide. Such an attack has been demonstrated
effective in the physical world [56]. The blue points in Figure 5
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represent the suspicious point cluster extracted in Stage I. Our
objective is to use a search box (the red cuboid in Figure 5) to locate
the points generated by the adversarial object and then remove them
from the original point cloud containing the suspicious cluster (i.e.,
𝑃𝑖 ). The search space is defined by an external cuboid surrounding
the suspicious point cluster (the grey cuboid). We then use the
modified point cloud to query the LiDAR detection model and
determine whether an attack is present by observing if the detection
model can output a bounding box for the car.

An intuitive approach to achieve the above goal is to use random
search. Using Figure 5 as an example, with random search, we first
determine an appropriate size of the search box and randomly select
a position for it within the search space. We then remove all the
points within the search box from the original point cloud and
feed the modified point cloud into the LiDAR detection model. If
the detection model outputs a bounding box for a car, an attack is
detected. Otherwise, we repeat the process. Although this method
is intuitive and simple, it may not be practical in reality. First, it
is usually difficult to determine an appropriate size for the search
box without knowledge of the specific attack being used. If the
search box is too small, it cannot cover sufficient LiDAR points
generated by the adversarial object, and if it is too large, it may
include points generated by the car. In both cases, the detection
of the attack may fail, making random search very challenging.
Second, as discussed in Section 4, the defense mechanism must be
efficient, as the autonomous vehicle will continue driving before
the attack is detected. If the detection process takes too long, we
may not be able to prevent potential traffic accidents as intended by
the attacker. However, with the random search method, we cannot
guarantee that the attack will be detected in a short period of time.

To address the above issues, we propose a reinforcement learning
(RL)-based method to search for potential adversarial objects in the
point cloud and determine whether there is an attack by interacting
with the LiDAR object detection model. The proposed method is
attack-agnostic and does not require any prior knowledge about
the adversarial objects used by the attacker. It is intelligent and can
automatically adjust the positions and sizes of the search boxes
to accommodate the adversarial objects. This method addresses
the first challenge as well as the efficiency challenge described in
Section 4.

Given that the attacker may use multiple adversarial objects in
the attack [60], the proposed method utilizes multiple search boxes
to locate these objects simultaneously. We aim to determine the
optimal positions and sizes of these search boxes to cover sufficient
LiDAR points generated by adversarial objects in the point cloud.
We formulate the search for the positions and sizes of these boxes
as a reinforcement learning problem and define the attack detection
in Stage II as a decision-making process. Reinforcement learning
is a highly effective technique for decision-making and has been
widely used in various decision-making tasks [34, 42, 52], which
motivates the development of our method.

In decision-making, there is an agent that interacts with its
environment by taking actions and observing the reward. In our
context, the environment is the LiDAR detection model and the
point cloud containing the suspicious point cluster (i.e., point cloud
𝑃𝑖 saved in Stage I). The action is placing a set of search boxes 𝐵 =

{b1, b2, ..., b𝑁 }, where b𝑗 is the 𝑗-th search box and 𝑁 is the number

Figure 6: An example of adversarial object search with mul-
tiple search boxes.

of these boxes, in the point cloud. The reward is defined based
on the detection results produced by the LiDAR detection model.
This approach formulates the determination of the search boxes
(regarding their positions and sizes) as an optimization problem,
which is much more effective and efficient compared to random
search strategies.

Without loss of generality, we use three cuboids as the search
boxes (i.e., 𝑁 = 3) in the description of our proposed method. As
shown in Figure 6, each search box b𝑗 ( 𝑗 ∈ {1, 2, 3}) is parameterized
by the coordinates of its opposite corner points (𝑥 𝑗1 , 𝑦

𝑗

1, 𝑧
𝑗

1) and
(𝑥 𝑗2 , 𝑦

𝑗

2, 𝑧
𝑗

2). The range of these parameters are limited within an
external cuboid (with dimensions 𝐿 ×𝑊 × 𝐻 ) surrounding the
suspicious point cluster. The set of all possible values for the three
search boxes’ parameters is represented as:

S ={(𝑥11 , 𝑦
1
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1
1, 𝑥

1
2 , 𝑦

1
2, 𝑧

1
2, 𝑥

2
1 , 𝑦

2
1, 𝑧

2
1, ..., 𝑥

3
2 , 𝑦

3
2, 𝑧

3
2)

|𝑥 𝑗𝑞 ∈ [0, 𝐿], 𝑦 𝑗𝑞 ∈ [0,𝑊 ], 𝑧 𝑗𝑞 ∈ [0, 𝐻 ]},
(1)

where 𝑞 ∈ {1, 2}. Each element in set S has 18 dimensions, and
we configure the agent to take 18 actions in sequence to select
the values for these dimensions, generating an action sequence
a = (𝑎1, 𝑎2, ..., 𝑎18) ∈ S, where 𝑎𝑡 (𝑡 ∈ {1, 2, ..., 18}) is the action (or
the selected value) for the 𝑡-th dimension. We also discretize the
ranges [0, 𝐿], [0,𝑊 ], and [0, 𝐻 ] to obtain a discrete action space,
framing the value selection of the above parameters as a classifica-
tion problem.

In our design, the policy network 𝑝𝜋 used by the agent is a com-
bination of an embedding layer, a Long Short-TermMemory (LSTM)
layer, and a fully connected layer. We use 𝜃 to denote its parame-
ters. The embedding layer maps discrete actions into a continuous
space, which is crucial for capturing complex relationships between
different actions in a. The LSTM layer maintains dependencies and
captures long-term relationships between actions, helping to gen-
erate coherent and contextually relevant search boxes. The fully
connected layer following the LSTM maps its outputs to the action
space. At the 𝑡-th step, the policy network produces a probability
distribution for the potential actions at this step. It then samples
an action 𝑎𝑡 and records the associated probability 𝑝𝑡 . This process
finally generates the action sequence a and a probability sequence
p = {𝑝1, 𝑝2, ..., 𝑝18} that records the probabilities of sampling these
actions. Based on a, we can derive the positions and sizes of the
three search boxes in the point cloud. By removing all LiDAR points
within these boxes and feeding the modified point cloud into the
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LiDAR detection model, we obtain the detection result on the modi-
fied point cloud. Using this detection result, we can further calculate
a reward 𝑅. The loss function used to update the policy network is
defined as L = −𝑅∑6𝑁

𝑡=1 ln 𝑝𝑡 .
Once we derive a set of search boxes using the above approach,

we update the parameters of the policy network using L. The up-
dated network is then employed to derive another set of search
boxes using the same approach. This process is repeated iteratively
until the convergence criterion is met or a specific number of iter-
ations is reached. If no car is detected after the specified number
of iterations, the attack is not detected in the point cloud 𝑃𝑖 , and
our defense returns to Stage I. However, if the process converges
and the detection model finally outputs a bounding box of a car,
the attack is detected in the point cloud 𝑃𝑖 . To further confirm the
attack, we apply the derived search boxes to the subsequent point
clouds 𝑃𝑖+1, 𝑃𝑖+2, . . . , 𝑃𝑖+𝑛 and observe the outputs of the detection
model on these modified point clouds. If the number of point clouds
in which the attack is also detected exceeds a certain threshold, the
attack is confirmed, and the autonomous vehicle immediately takes
actions such as stopping or changing lanes.

The reward 𝑅, which represent the optimization goal, plays an
important role in our proposed method. It guides the search for the
optimal positions and sizes of the search boxes. In our design, the
reward R comprises the following components.

• Confidence score output by the LiDAR detectionmodel.
A typical LiDAR object detection model learns geometric
features from the input point cloud and outputs a set of
bounding box proposals. Each proposal is accompanied by a
confidence score indicating the likelihood that the bounding
box contains a vehicle. Proposals with confidence scores
below a certain threshold are ignored, while those with high
confidence scores are accepted as detection results. Since
our goal in Stage II is to detect the hidden front car, a higher
confidence score for the output bounding box indicates better
performance of the designed defense method. Therefore, the
first component of reward 𝑅 is the confidence score output
by the detection model, which is denoted as 𝐶 .

• Overlap between search boxes and important regions
within the search space. To identify adversarial objects
within the search space, the optimization process should
guide the search boxes to continuously approach the regions
where the adversarial objects are located. Therefore, com-
pared to other regions in the space, the regions containing
the adversarial objects are more critical in the optimization
process. However, we do not have prior knowledge about
these important regions before the search process begins. If
we can identify them during the optimization process and use
this information to guide the movement of the search boxes,
the search would be more effective and efficient. To achieve
this goal, we first divide the search space into many grids and
assign an importance score to each grid containing LiDAR
points. Grids without any LiDAR points are skipped. The
initial value of the importance score is set to 0. During each
iteration of the optimization, if the confidence score output
by the detection model exceeds a threshold, the importance
scores of the grids within the search boxes are incremented

by 1. Next, we extract the grids whose importance scores are
above a certain threshold and calculate the 3D Intersection
over Union (3D IoU) between the search boxes and these
grids. The 3D IoU (denoted as 𝐼 ) is used as the second com-
ponent of the reward. Through the above operations, we aim
to enable the proposed method to leverage the experience
from previous search iterations to guide the search process
in subsequent interactions.

• The space occupied by search boxes. To identify adver-
sarial objects, the size of the search boxes should not be
too large, as large boxes may include LiDAR points that are
not generated by adversarial objects. Therefore, we use this
component to limit the total space occupied by all search
boxes in the optimization process. Specifically, we calculate
the union volume𝑉 of all search boxes and use it as the third
component of the reward.

The final reward 𝑅 is calculated as 𝑅 = 𝐶 +𝛼𝐼 − 𝛽𝑉 , where 𝛼 and
𝛽 are the parameters used to adjust the balance between the three
components.

6 Experiments in the Digital World
6.1 Experimental Setting
Dataset. We first evaluate our defense mechanism using the KITTI
dataset [13], which is one of the most widely used public datasets
in the field of autonomous driving. Since we focus on object-based
attacks aimed at hiding a target front vehicle, we select LiDAR
frames that contain a vehicle in front of the victim vehicle (i.e., the
autonomous vehicle) in the same lane.

Object detectionmodels. We consider twowidely used state-of-
the-art LiDAR object detection models: PIXOR [51] and PointPillars
[25]. PIXOR achieves real-time detection using an efficient bird’s-
eye view (BEV) representation of a 3D driving scene. PointPillars
is a voxel-based model that divides the point cloud into vertical
columns (pillars) and utilizes PointNets to learn their features. The
threshold for the confidence score is set to 0.5 in these models.

Attack methods. We consider various types of state-of-the-art
object-based LiDAR attacks. For attacks using objects with specific
shapes, we include the methods proposed in [45] and [57]. The
method developed by Tu et al. [45] aims to hide a target vehicle
from the LiDAR object detection model by placing a 3D-printed
object with a specific shape on the rooftop of the target vehicle. To
improve the physical robustness of this adversarial object, Zhu et
al. [57] propose adjusting the geometric properties of the object
to enhance the attack’s effectiveness in the physical world. The
attack methods proposed in [45] and [57] are denoted as AdvObj
and AE-Morpher, respectively. For attacks using common objects,
we consider those proposed in [60] and [56]. Zhu et al. [60] identify
certain adversarial locations in the physical space where placing
common objects can achieve the attacker’s goal. This method is
denoted as AdvLoc. Differing from the above attacks, which focus
on modifying the driving environment during the testing stage of
LiDAR object detectionmodels, Zhang et al. [56] propose a backdoor
attack that involves both poisoning the training set of the detection
model and modifying the driving environment at the testing stage.
The backdoor attack proposed in [56] is denoted as BALiDAR.
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Table 1: Performance on different attack methods.

Attack 40 − 45𝑚 50 − 55𝑚 60 − 65𝑚

DR(%) RT(𝑠) DR(%) RT(𝑠) DR(%) RT(𝑠)

AdvLoc 85.5 3.4 91.1 3.1 95.6 2.6
BALiDAR 87.5 5.1 91.4 4.7 90.4 3.8
AdvObj 83.3 4.4 85.6 4.6 81.1 4.0

AE-Morpher 90.0 3.6 94.4 3.8 96.7 3.8

Baselines. To the best of our knowledge, there is no existing
defense strategy against object-based LiDAR attacks that is both
attack-agnostic and detection model-agnostic while also being ca-
pable of identifying adversarial objects and practical for real-world
driving scenarios. In our experiments, we consider two baseline
methods for comparison. The first baseline method is adversarial
training, where we retrain the detection model by inserting adver-
sarial point clusters generated by potential adversarial objects into
the training data. The second baseline method is random search,
in which we randomly select the positions of search boxes within
the search space and modify the input point cloud by removing all
LiDAR points within these randomly positioned boxes.

Evaluation metrics. We mainly use the following metrics to
evaluate the performance of our proposed mechanism.

• Detection rate (DR): This metric is defined as the percentage
of attacked LiDAR frames in which the hidden vehicle is
successfully detected by the defense, relative to the total
number of attacked LiDAR frames. A higher DR indicates a
more effective defense method.

• Runtime (RT): This metric is used to evaluate the efficiency of
the defense. It is defined as the time required to successfully
detect the hidden vehicle in a single attacked LiDAR frame.
A shorter runtime indicates a more efficient defense.

Other settings. In this paper, the default number of search boxes
used for identifying adversarial objects is set to 3. For the attack
verification process in Stage II, we remove adversarial LiDAR points
in three subsequent point clouds. If the attack can be detected in
at least two of them, the attack is confirmed. All experiments in
this paper are conducted on a computer equipped with an Intel i9-
10920X processor and an Nvidia RTX 6000 GPU. In implementing
our proposed reinforcement learning framework, the batch size
is set to 5. Specifically, we create 5 copies of the suspicious point
cluster identified in Stage I and place them in the same batch.

6.2 Detection Performance
Performance on different attack methods. The reinforcement
learning-based attack detection designed in Stage II is the most
crucial component of our defense mechanism. We first evaluate the
effectiveness and efficiency of this component against various attack
methods. In this experiment, we use the PIXOR object detection
model. We implement the four attack methods mentioned above
according to the settings in their original papers. For AdvLoc, we
use two billboards hovered by drones as the adversarial objects and
place them at two adversarial locations around the target vehicle
(i.e., the vehicle the attacker intends to hide). In the BALiDAR

Table 2: Comparison with baseline methods.

Defense 50 − 55𝑚 60 − 65𝑚

DR(%) RT(𝑠) DR(%) RT(𝑠)

Adversarial training 9.5 / 10.2 /
Random research 28.9 8.8 35.6 8.0

Ours 91.3 3.9 93.0 3.2

attack, we use a sphere with a 0.4𝑚 radius as the backdoor trigger.
For AdvObj and AE-Morpher, we follow their original settings,
generating an adversarial object with a specific shape for each of
them and placing the object on the rooftop of the target vehicle.

Table 1 shows the detection rate (DR) and the average run-
time (RT) of the proposed reinforcement learning-based detection
method for the four attacks mentioned above. In this experiment,
we consider three distance ranges (40 − 45 meters, 50 − 55 meters,
and 60− 65meters) between the target vehicle and the autonomous
vehicle. For each range, we randomly select approximately 30 suc-
cessfully attacked LiDAR frames for each type of attack, most of
which are collected in different environments. The results in Table
1 demonstrate that our proposed detection method performs well
across all cases, with the detection rate exceeding 85% in most in-
stances. For example, the detection rates of our method against the
AdvLoc attack for the three distance ranges are 85.5%, 91.1%, and
95.6%, respectively.

The runtime results in Table 1 indicate that the reinforcement
learning-based detection method is efficient. For instance, when
the distance range is 60 − 65 meters, the average runtime across
the four attacks is only 3.6 seconds. Given that the autonomous
vehicle reduces its speed before detection starts, this runtime allows
sufficient time for the vehicle to take appropriate actions (e.g., stop-
ping or changing lanes) once the attack is detected. For example,
if the autonomous vehicle is traveling at 15 miles per hour during
detection, the distance between the autonomous vehicle and the
target vehicle would still be around 35 meters, providing ample
space for the vehicle to stop or change lanes.

Comparison with baseline methods. We compare our pro-
posed defense with two baseline methods: adversarial training and
random search, which are described in Section 6.1. In this exper-
iment, we still use the PIXOR detection model. We consider the
AdvLoc and BALiDAR attacks. For adversarial training, we use
each of the two attack methods to generate 100 point clouds with
adversarial LiDAR points and add them to the training set of the
detection model. For random search, we also use three search boxes
and randomly select the positions and sizes of these boxes each
time and observe the output of the detection model on the point
cloud after removing points within these randomly selected boxes.
Since our method stops the search once the reinforcement learning
framework converges, to ensure a fair comparison, we define a
successful detection for random search on a single LiDAR frame as
detecting the hidden vehicle successfully three times. The runtime
is defined as the time required for a successful detection. We also set
a time threshold of 10 seconds to stop the search process manually,
as the search process may otherwise never conclude in some cases.
In the testing stage, we consider two distance ranges (50-55 meters
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(a) AdvLoc (b) BALiDAR

Figure 7: Impact of the number of search boxes on the detec-
tion performance.

and 60-65 meters) between the autonomous vehicle and the target
vehicle. Similar to the previous experiment, we randomly select
approximately 30 LiDAR frames for each distance range. Table 2
reports the average results for two attack methods (i.e., AdvLoc and
BALiDAR). Since adversarial training is conducted offline, we do
not report its runtime. Our proposed defense significantly outper-
forms these baseline methods in terms of both detection rate and
runtime. The runtime of our method is less than half that of ran-
dom search, which is crucial in autonomous driving, as the vehicle
usually has limited time and distance to take actions.

Impact of the number of search boxes. In our experiments,
the default number of search boxes used for identifying adversarial
objects is set to 3. To evaluate the impact of the number of search
boxes on defense performance, we vary the number from 1 to 5 and
calculate the average detection rate (DR) and runtime (RT) on a
single LiDAR point cloud. We use PIXOR as the detection model and
randomly select approximately 30 attacked LiDAR frames within
the distance range of 40 to 65 meters for evaluation. The AdvLoc
and BALiDAR attacks are considered in this experiment. The experi-
mental results for the two attacks are shown in Figure 7a and Figure
7b, respectively. We observe that the average runtime decreases as
the number of search boxes increases. This is reasonable because
the more search boxes used, the higher the likelihood of including
adversarial points within them. However, for the average detection
rate, its value first increases and then decreases as the number of
search boxes increases. A possible reason is that, while increasing
the number of search boxes can improve the chances of capturing
more adversarial points, it also increases the likelihood of including
benign points (i.e., points generated by the target vehicle).

Performance on different object detection models. Our pro-
posed defense mechanism is detection model-agnostic. It treats
the detection model as a black box and only requires querying the
model to obtain its output. Therefore, our mechanism can be applied
to any LiDAR object detection model. To demonstrate the effective-
ness of our defense across different detection models, we also use
another widely adopted LiDAR object detection model, PointPillars,
to evaluate the detection performance. Table 3 presents the average
detection rate and runtime for the AdvLoc and BALiDAR attacks
when PointPillars is used as the detection model. We randomly
select approximately 50 attacked LiDAR frames within the distance
range of 40 to 65 meters between the autonomous vehicle and the
target vehicle for evaluation. We can observe that the proposed
defense still achieves high detection rates within just a few seconds,
and the results are similar to those obtained when the detection
model is PIXOR.

Table 3: Defense performance on PointPillars.

Attack method DR(%) RT (𝑠)

AdvLoc 93.3% 3.0
BALiDAR 90.0% 4.8

False positive detection. As described in the first paragraph
of Section 5.3, benign objects at the roadside, such as those shown
in Figure 4, may also generate suspicious clusters and activate
Stage II of our defense. To evaluate whether our detection method
might produce false positives in these scenarios, we conduct a
case study using the CARLA simulator [12], a widely used open-
source autonomous driving simulator. Specifically, we simulate the
driving environment shown in Figure 4a and place a billboard at
the roadside. The initial distance between the billboard and the
autonomous vehicle is set to 60 meters, and the vehicle’s speed
to 20 miles per hour. The points generated by the billboard are
successfully identified as a suspicious point cluster in Stage I of our
defense, and Stage II is activated. We use PIXOR as the detection
model and randomly select 30 LiDAR frames within the 40-60 meter
distance range between the autonomous vehicle and the billboard,
finding that no vehicles are detected in any of these frames. To
further assess the potential for false positive detection, we reduce
the detection threshold of PIXOR from 0.5 to 0.3, and still find no
vehicles detected in these frames. The results above demonstrate
that there are no false positive detections in the collected LiDAR
frames, indicating that our defense maintains stable performance
even in benign environments.

6.3 Overall Performance
In Section 6.2, we primarily evaluate the performance of the rein-
forcement learning-based detection component in Stage II of our
defense. Next, we assess the performance of the overall pipeline of
our proposed mechanism. Specifically, we integrate our mechanism
into the autonomous driving system in the CARLA simulator to
observe its impact on the behavior of the autonomous vehicle.

By being integrated into the autonomous driving system, our
defense mechanism detects potential attacks in the driving envi-
ronment and communicates its decisions to other system modules,
which can then guide changes in the autonomous vehicle’s behav-
ior. To evaluate the impact of our defense on the vehicle’s final
behavior, we use the CARLA simulator to run the entire pipeline
of the autonomous driving system with our mechanism integrated.
The CARLA simulator supports customizing driving scenarios and
provides APIs for integrating our mechanism with other modules
in the driving system. We use AdvLoc as the attack method and
PIXOR as the detection model. We implement the AdvLoc attack
with two cardboard pieces hovered by drones (approximated using
rectangular shape boxes). The speed of the autonomous vehicle
is set to 20 miles per hour, and the initial distance between the
autonomous vehicle and the front car is set to 60 meters.

As shown in Figure 8a, when there is no defense, the effect of
the attack persist over a long distance, and PIXOR fails to detect
the front car until the autonomous vehicle is very close (around
11.2 meters). The front car is detected at this closer range because it
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(a) (b) (c) (d)

Figure 8: Impact of our defense on autonomous vehicle behavior. (a) The first LiDAR frame in which the car in front is detected
when there is no defense. (b) The autonomous vehicle collides with the front car when there is no defense. (c) The first LiDAR
frame after the attack is detected and verified using our defense. (d) The autonomous vehicle successfully changes lanes after
the attack detection using our defense.

Figure 9: The LiDAR perception testbed with a Velodyne
VLP-32C LiDAR.

generates more LiDAR points, which improve the detection model’s
feature learning. However, in this scenario, even if the autonomous
vehicle takes immediate actions (e.g., changing lanes), it still col-
lides with the front car (as shown in Figure 8b), following CARLA’s
default planning algorithm with the updated waypoints. In com-
parison, our defense mechanism enables early detection, providing
sufficient distance and time for the autonomous vehicle to take ap-
propriate actions. Figure 8c shows the first frame after the attack is
detected and verified using our defense, with the distance between
the two vehicles being approximately 25 meters. This distance is
sufficient for the autonomous vehicle to take proper actions. As
shown in Figure 8d, the autonomous vehicle successfully changes
lanes, maintaining a safe distance from the front car.

The above experiments demonstrate that our proposed defense
is both effective and practical when integrated into existing au-
tonomous driving systems and applied to real driving scenarios.

7 Experiments in the Physical World
7.1 Experimental Setting
In this section, we evaluate the performance of our defense in real-
world scenarios using a LiDAR perception testbed equipped with
a Velodyne VLP-32C LiDAR, as shown in Figure 9. The Velodyne
VLP-32C LiDAR has been widely used in autonomous driving. It
features 32 channels and a 40° vertical field of view. The LiDAR
sensor is mounted on the rooftop of the vehicle, approximately 1.8
meters above the ground. We use PIXOR as the object detection
model and consider the AdvLoc and BALiDAR attacks, which have

(a) (b) (c)

(d) (e) (f)

Figure 10: Real-world scenarios for AdvLoc and BALiDAR
attacks. The first row illustrates the AdvLoc attack, while the
second row depicts the BALiDAR attack. (a) and (d): Scenario
1; (b) and (e): Scenario 2; (c) and (f): Scenario 3.

been implemented in the physical world [56, 60]. To launch these
attacks, we use a Ford sedan as the target vehicle and park it in front
of the testbed on the road. For the AdvLoc attack, we utilize two
types of adversarial objects: foil-wrapped paper balls and pieces of
cardboard. For the BALiDAR attack, we follow the original paper’s
settings, employing an exercise ball with a radius of 0.4 meters and
a cargo carrier bag as adversarial objects.

7.2 Performance Evaluation
Performance in different driving scenarios. We first evaluate
the performance of our proposed reinforcement learning-based
detection method across different driving scenarios. Specifically,
we consider three scenarios, as shown in Figure 10. The first row
of the figure illustrates the AdvLoc attack, while the second row
depicts the BALiDAR attack. In these scenarios, the Ford sedan
(the target vehicle) is parked on the road, and the victim vehicle,

390



SenSys ’24, November 4–7, 2024, Hangzhou, China Y. Zhang, Z. Liu, C. Jia, Y. Zhu, and C. Miao

Table 4: Defense performance in different driving scenarios.

Attack Scenario 1 Scenario 2 Scenario 3

DR(%) RT(𝑠) DR(%) RT(𝑠) DR(%) RT(𝑠)

AdvLoc 81.3 3.2 86.7 3.4 84.6 3.3
BALiDAR 83.3 2.5 88.9 2.9 82.2 3.7

Table 5: Distance (in meters) between the victim and target
vehicles after attack detection.

Attack method 5 mph 10 mph 15 mph

AdvLoc 42.8 33.1 24.6
BALiDAR 43.2 36.5 30.5

equipped with a LiDAR sensor, drives towards it. The locations of
the adversarial objects are determined based on the respective attack
methods. For each scenario, we randomly select 30 successfully
attacked LiDAR frames within a distance range of 40 to 55 meters
between the two vehicles for evaluation. The average detection
rates and runtimes for AdvLoc and BALiDAR attacks in different
scenarios are presented in Table 4. The results demonstrate that
our proposed method achieves good detection rates across various
physical-world driving scenarios involving different adversarial
objects. The efficiency in the physical world is comparable to that in
the digital world, with attacks being detected in just a few seconds.
We also observe that detection rates in these scenarios are slightly
lower than those in the digital world. A possible reason is that
the number of adversarial LiDAR points collected in the physical
world is typically lower than in the digital world due to factors such
as hardware limitations and physical conditions, making it more
challenging to identify the adversarial objects.

Next, we calculate the distances between the victim vehicle and
the target vehicle after the attack is detected and verified at differ-
ent speeds. Our aim is to evaluate the effectiveness of our defense
in preventing potential collisions. Specifically, we consider three
driving speeds for the victim vehicle in Scenario 1 (as shown in Fig-
ure 10a and Figure 10d): 5 miles per hour, 10 miles per hour, and 15
miles per hour. We randomly select attacked LiDAR frames within
the distance range of 50 to 55 meters between the two vehicles.
First, we calculate the average runtime required for detecting and
verifying the attack. Then, we estimate the distance between the
two vehicles when the victim vehicle begins to take actions such
as stopping or changing lanes. Table 5 shows the results for the
AdvLoc and BALiDAR attacks. We can observe that the distances
in all cases are sufficient for the victim vehicle to take appropriate
actions and prevent potential dangers.

Impact of the passing vehicle. In real-world driving scenarios,
other vehicles may be present around the target vehicle when an
attack is launched. To assess the impact of surrounding vehicles
on our attack detection performance, we simulate a real-world
scenario with a passing vehicle near the target vehicle that the
attacker aims to hide. This scenario is depicted in Figure 11. In
this experiment, we evaluate both AdvLoc and BALiDAR attacks,
randomly selecting 30 attacked LiDAR frames within the distance

(a) AdvLoc (b) BALiDAR

Figure 11: The scenario with a passing vehicle.

range of 40 to 55 meters between the victim vehicle and the target
vehicle. The average detection rates for the AdvLoc and BALiDAR
attacks are 86.7% and 87.8%, respectively, with average runtimes of
3.5𝑠 and 3.6𝑠 . These results demonstrate that our defense maintains
good effectiveness and efficiency, even in the presence of another
vehicle in the driving environment.

8 Limitations and Future Work
Efficiency. Although the proposed defense mechanism is highly ef-
ficient, it is not real-time and requires a few seconds to complete the
attack detection process. If the victim autonomous vehicle is trav-
eling at high speed, it would need to decelerate to allow sufficient
time for attack detection and to take appropriate actions to prevent
potential traffic accidents. While this is acceptable in most driv-
ing scenarios, a real-time defense mechanism against object-based
LiDAR attacks would be more desirable for autonomous driving.

Other attacks. In this paper, we primarily focus on defending
against vehicle hiding attacks, which have been widely studied in
existing object-based LiDAR attack research. However, attackers
may launch other types of object-based LiDAR attacks in practice.
For example, they may target the LiDAR perception systems of
autonomous vehicles to hide other objects, such as pedestrians or
bicycles, by placing adversarial objects in the driving environment.
Additionally, attackers could compromise trajectory prediction in
autonomous driving systems through object-based LiDAR attacks.
In future work, we plan to extend the proposed defense mechanism
to address these additional attack types.

9 Conclusion
In this paper, we study how to effectively defend against object-
based LiDAR attacks in autonomous driving. We propose a novel
online defense mechanism that processes collected LiDAR data to
mitigate potential threats before the data is fed into the perception
module of autonomous driving systems. This mechanism is not only
effective and efficient for real-world autonomous driving but also
attack-agnostic and capable of identifying adversarial objects used
by attackers. The performance of the proposed defense is evaluated
in both simulated environments and real-world scenarios using
a LiDAR perception testbed. The experimental results show that
our defense can detect attacks within a few seconds with a high
detection rate.
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